


1



Ardor vs the Competition

Editor: apenzl
Writer: segfaultsteve
Design: apenzl, on behalf of Nxter Magazine

Published 24.11.2017

This publication is also available in Spanish, Chinese, Russian, and other languages.

Special thanks to: segfaultsteve, jose, rubenbc, fz1128, sergei, Nxt and Ardor Group, Jelurida.

2

https://nxter.org/


TABLE OF CONTENTS

Preface  ...............................................................................................................................4

Pt 1: LISK  ............................................................................................................................8

Pt 2: NEM/Mijn/Catapult  ....................................................................................................13

Pt 3: IOTA  ............................................................................................................................20

Pt 4: Waves  .........................................................................................................................29

Pt 5: Stratis  .........................................................................................................................36

Pt 6: Komodo/SuperNET  ...................................................................................................42

Pt 7: Ethereum (Smart Contracts)  .....................................................................................49

Pt 8: Ethereum (Blockchain Bloat)  ....................................................................................57

Closing Remarks  ................................................................................................................65

Resources  ...........................................................................................................................69

3



 Preface

24.11.2017, Nxtville.

Congrat’s, Nxt. 

Wow, how time flies! 

Since Nxt launched as the first 100% PoS cryptocurrency 2.0, four years ago, all described and 
elaborated in the book ‘SNAPSHOT’, Jelurida B.V. formed and registered, as a “soEware 
development company engaged in the creation of Nxt and Ardor blockchain technology”. 
Jelurida now releases Nxt under a ‘JPL’ license, which is meant to make cloning fair for all.

Today, on Nxt's 4th anniversary, Jelurida has published the source code of Ardor.

They raised over $15,000,000 in their ICO for IGNIS, their child chain token on the Ardor Platform.
Ignis inherits all the features of Nxt (token transferrals plus smart transactions triggering 
hardcoded smart contracts), and more. Jelurida says, “these funds will be used for the further 
development, maintenance, advancement and world-wide promotion of the Nxt and Ardor 
blockchain platforms, as well as protecting the intellectual property of the code base.” Ignis will 
be released with the Ardor Genesis Block, to be forged on 0:00 UTC, Jan. 1st , 2018.

So what is Ardor? What is Nxt?

4

https://www.nxter.org/snapshot-nxt-unsurpassable-blockchain-solutions/
https://www.jelurida.com/jpl
https://nxtforum.org/nrs-releases/ardor-v2-0-6e/
https://www.jelurida.com/ardor-nxt-feature-comparison


Non-nxters can START HERE, new nxters and developers should check out this whitepaper.

About three months ago, segfaultsteve joined /r/ardor, claimed to be ”no expert on Ardor”, but 
then immediately began answering questions about the Ardor blockchain platform, showing 
great knowledge and understanding of its design. Shortly thereaEer, he had his first original 
post:

All the cool kids are talking about Plasma, so I figured I'd try to wrap my head around it 
too. I'm particularly interested in comparing and contrasting "child chains" in Plasma 
and Ardor. I'm having a hard time of it, though, because frankly, the Plasma paper is 
poorly written. There, I said it.

I'm posting a brain-dump here so that y'all can correct me wherever I've misunderstood 
something. Hopefully you'll find it useful too. :)

He starts his brain-dump,

In my understanding, the key diNerence between a Plasma chain on Ethereum and a 
child chain on Ardor is that the nodes securing the Ethereum network (i.e., miners) don't 
validate Plasma chain transactions directly, whereas on Ardor, all nodes on the Ardor 
network, including forgers, validate child chain transactions. 

All of the other diNerences between Plasma and Ardor--the bonds that validators post in 
smart contracts on the parent chain; the "fraud proofs" that force cheaters to forfeit their
bonds; the "mass exit" mechanism that is supposed to protect against block-withholding
attacks--flow from this one diNerence, in the sense that none of these things are 
necessary on Ardor because forging nodes directly validate child chain transactions.

On Ardor, only accounts that hold ARDR forge, and every transaction that changes the 
ARDR balances is recorded directly on the Ardor chain. Because the entire network 
(including forgers) validates child chain transactions, one can check any block in the 
parent chain and verify that the network at the time came to a consensus about the child 
chain transactions, and therefore that the subsequent state of child chain accounts was 
valid. By induction, the current state of accounts is valid too. (I'm glossing over some 
details, but this is the gist of it, I think.)

In Plasma, though, ETH miners don't see the child chain transactions. Rather, consensus 
on child chain transactions comes from "validators" on the child chains. These are 
accounts that are responsible for forging child chain blocks (e.g., using proof-of-stake) 
and reporting their hashes to the parent chain. These validators have posted bonds on 
the parent chain that are "listening" for proofs of fraud from users, and if a user can 
prove that a validator forged an invalid block, the validator forfeits the bond. In this way, 
validators are incentivized to reject fraudulent transactions. Ultimately, though, the 
consensus mechanism seems to be rooted in the willingness of users to audit child chain 
blocks and blow the whistle on validators who cheat.

5

https://www.nxter.org/nxt-tutorials/
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf
https://www.reddit.com/r/Ardor/
http://plasma.io/


What if the validator (or a cartel of validators) on a child chain withholds new blocks, 
though? It wouldn't necessarily be possible to construct a proof of fraud, since some of 
the required information isn't available yet (though I admit I'm a little fuzzy on this part). 
To minimize the damage that could be caused in this case, Plasma describes a fairly 
elaborate "mass exit" mechanism that allows coalitions of users to withdraw their funds 
en masse if they detect that validators are withholding blocks.
One other diNerence between Plasma and Ardor that is probably worth mentioning is 
that Plasma chains can be organized in a tree structure, where each Plasma chain can 
have multiple children, and the children can have children, and so on. In some cases, this
will facilitate scaling of large computations across a lot of child chains using an algorithm
similar to MapReduce.

Maybe I've misunderstood, but I'm a little skeptical of this part. Large jobs only scale in 
cases where each node does a small subset of the computations. If I'm only 
validating/policing my part of the computation, though, and nobody is validating 
another piece, then the final reduced result will be wrong. It seems like the only way for 
me to guarantee against that possibility is to validate all of the computations (i.e., all 
transactions on all of the child chains involved), which means that MapReduce didn't 
achieve any scaling benefit.

So what to make of all of this?

In my opinion, the main similarity between Ardor and Plasma is that both reduce 
blockchain bloat by storing only hashes of child chain blocks on the parent chain. There 
are several important diNerences, though:

• In Ardor, all nodes validate all child chain transactions, whereas in Plasma nodes 
only need to validate the transactions that aNect them. This could greatly 
increase the total throughput of the network, since most nodes could ignore most
computations, namely all those belonging to completely unrelated applications. 
A potentially similar feature that's on the Ardor roadmap would delegate the 
verification of child chain transactions to dedicated subnets, but there aren't 
many details in the white paper.

• The concept of "confirming" a transaction on Ardor is pretty straightforward. In 
contrast, there's a period of time on a Plasma chain where a block can be rolled 
back, even aEer a validator hashes it and adds it to the parent chain (I think), 
because it's possible somebody will present a proof of fraud. I'd like to 
understand this mechanism better.

• Ardor actually exists. :)

6



In the past last months, segfaultsteve has read, analysed, and wrapped his head around 
blockchain platforms, compared them to Ardor, and blogged about it in Nxter Magazine.

Without further ado, dig into a well researched article series: ”Ardor vs the Competition” which 
takes a good look into Ardor,  Ethereum, Lisk, IOTA, Waves, Stratis, NEM and Komodo Platform.

- apenzl

7

https://nxter.org/


 LISK

Ardor vs The Competition Pt 1
by segfaultsteve

I recently decided to start a series of posts that compare and contrast Ardor with other 
blockchain projects that appear to have similar goals or features. Roughly each week, I'll pick a 
project whose scope overlaps at least a little with Ardor's, study its technical documentation, 
and post a summary of my findings here for you to critique. This week, I've been reading about 
Lisk.

Lisk
In a nutshell, Lisk is a platform for developing decentralized applications (dapps) that run on 
sidechains anchored to the Lisk mainchain. It uses a delegated proof-of-stake (DPOS) consensus 
mechanism to secure the mainchain, while sidechains are each responsible for their own 
security (sort of, but see the description of the delegate marketplace below). The protocol uses a
set of predefined transactions, rather like Nxt and Ardor, as opposed to a low-level scripting 
language like Bitcoin or Ethereum.

8



Before I get into the details, I should start by saying that Lisk is definitely in an early stage of 
development. The team is currently in the middle of rewriting the Lisk SDK, which will support 
sidechain development, and is continuously refactoring Lisk Core, which is the full node.

With the code in flux, some important architectural questions, particularly about sidechains and 
how they will interact with one another and with the mainchain, do not appear to have been 
settled yet. On the other hand, I had some diNiculty finding a current, authoritative source of 
technical information about Lisk, so what I present here might be out of date. The best 
information I could find was in the wiki, this article by one of the co-founders, the roadmap, 
and these YouTube videos. None of the first three sources are recent, unfortunately, and even 
the videos don't go into much depth (though I admit I haven't watched all 6+ hours of them). If 
you've found better references, I'd be grateful if you could send them my way.

The marketing buzz surrounding Lisk seems to focus on the SDK, the goal of which is to make it 
easy to build, deploy, and secure a dapp running on a customizable blockchain. The devs wrote 
the SDK in JavaScript because they want to make Lisk accessible to as wide an audience as 
possible, and they also wrote the backend in JavaScript (Node.js) because...well, I guess I'll 
never understand why people insist on using JavaScript on the backend. :)

But clearly, ease of developing and deploying a custom blockchain is not the only goal of Lisk. If 
it were, then what purpose would the mainchain serve? You might as well clone Bitcoin or Nxt if 
all you want is a good starting point for building your own blockchain.

The mainchain/sidechain architecture is the real distinguishing feature of this platform. As far as
I can tell, the mainchain serves at least three important functions:

1.The Lisk API will allow deposits of LSK on the mainchain to be transferred to and from 
sidechains. With two such transactions, it will be possible to send LSK from one sidechain
through the mainchain and to another sidechain. Unfortunately, according to the article 
by one of the co-founders linked above, it sounds like transferring LSK onto a sidechain 
will require sending it to the sidechain's owner, which obviously requires some degree of 
trust. To avoid this problem, it will be possible to create sidechains that use their own 
forging tokens instead of LSK. This token would then need to be traded for LSK in order 
to transact through the mainchain with another sidechain. Alternatively, it might be 
possible for one sidechain to transact directly with another sidechain without going 
through the mainchain, but the developers are still researching how this would work.

2.Eventually, the team plans to build a "delegate marketplace" where delegates who are 
not securing the mainchain can oNer to secure sidechains and are paid "either by the 
[sidechain] application owner or its users." Again, the details are a little fuzzy, but there 
seems to be a lot of value here: presumably the Lisk network is already far larger than a 
typical brand new blockchain network, and the delegate marketplace gives sidechains an
"oN-the-shelf" set of nodes that they can use to secure themselves in their infancy.

9

http://lisk.support/QA/
https://blog.lisk.io/lisk-development-roadmap-5afc4cd0612e
https://blog.lisk.io/what-is-lisk-and-what-it-isnt-e7b6b6188211
https://github.com/LiskArchive/lisk-wiki/wiki/Technical-Protocol-Reference


3.Some nodes on the network (not sure which ones) will periodically hash sidechains and 
store the hashes on the mainchain as a "basic validation of sidechain integrity." I haven't 
been able to find any details about how this mechanism will work, though.

Apart from these functions, and from the obvious role it plays in transferring LSK between 
accounts, the mainchain itself doesn't seem to have any other intended uses. All of the business 
activity is supposed to occur on the sidechains.

Compared to Ardor
How does this architecture compare with Ardor's parent chain and child chains?

Maybe the most obvious diNerence is that each sidechain must have its own set of nodes to 
secure it, whether these are provided by the sidechain creator, the users, or eventually the 
delegate marketplace.

With Ardor, in contrast, every node on the network validates child chain transactions, but only 
accounts holding ARDR forge. The fact that accounts holding child chain tokens don't forge with 
them means that it doesn't matter how small child chains are or how unequal the distribution of
tokens on them is; they are all just as secure as the parent chain.

One additional note about Lisk is that, until the delegate marketplace opens, sidechain 
creators choose the nodes that forge on their chains, which seems to require that users place a 
great deal of trust in them. On the other hand, the team has also suggested that Lisk will be 
flexible enough to allow sidechains to use an entirely diNerent consensus algorithm, like proof-
of-work, so it seems that sidechain creators wouldn't determine which nodes secure the chain in
that case.

10



There are also plans to allow existing sidechains to switch consensus mechanisms even aEer 
they launch, but again I haven't been able to find details.

Clearly, both Lisk and Ardor intend to oNer scaling advantages over traditional blockchains. With
Lisk, the computational scaling advantage is obvious, since each forging node validates only the 
transactions on a single blockchain, either the mainchain or a sidechain. The reduction in 
required storage space (i.e., blockchain bloat) is less clear, though. Compared to Ethereum, say, 
it's obvious that for a similar level of total activity, the many chains in the Lisk ecosystem will 
each grow more slowly than the single Ethereum chain, simply because sidechains will not store 
each other's data.

Compared to Ardor, though, the storage savings would be modest. Ardor's parent chain will 
grow at a similar rate to the Lisk mainchain--as both will store only hashes of sidechain or child 
chain data instead of the data itself--but on Ardor the child chain data will be pruned away, 
eliminating the blockchain bloat problem that Lisk will still have on each sidechain.

Conclusion
What, then, should we make of Lisk? Honestly--and I'm very disappointed to write this--I think 
it's simply too early to tell. Too many important details have yet to materialize:

• Will it be possible to convert one sidechain's token directly to another sidechain's token 
without converting to and from LSK? How?

• When the delegate marketplace opens, will it be possible for users to elect delegates 
using sidechain tokens? Or will they have to use LSK? Or will sidechain owners maintain 
control over which delegates forge?

• What will Lisk do with the hashes of sidechains that are stored on the mainchain? Will it 
be possible to roll back recent transactions on a sidechain to "restore" it to the state it 
had when it was hashed? If so, will there be some time aEer which this will not be 
possible, so that the sidechain can still be considered immutable?

• Will the Lisk SDK provide some clean mechanism for changing the consensus algorithm 
on an existing sidechain? I'm not sure what this would look like.

• What happens if a sidechain that uses LSK forks? Obviously, the LSK tokens on both 
resulting sidechains cannot be simultaneously backed by the same LSK reserves on the 
mainchain. I would assume the sidechain creator eNectively gets to choose which chain is
the "real" one, since he or she is the one holding the reserves on the mainchain, but I 
don't know for sure that this is correct.

• Depending on how Lisk will support transactions directly between sidechains, this same 
concern could require additional trust between sidechain creators. In particular, if 
sidechain creators must hold reserves of each other's tokens to enable cross-chain 

11



transactions, which seems like one plausible way to do it, then a fork in one sidechain 
could give the other sidechain's creator some influence over which branch of the fork is 
honored. Moreover, if the forking sidechain transacts with several other sidechains, each 
of which hold reserves of the split token, then the situation could get ugly pretty quickly.

In my opinion, the most important advantage Lisk has over most blockchain platforms, 
including Ardor, is that it will accomplish a natural computational scaling by segregating each 
dapp onto its own blockchain. If, in addition, sidechains will be able to transact seamlessly and 
trustlessly with one another, then it seems like the design has immense potential.

If we're making the assumption that the Lisk team will successfully implement all the features 
required to make this happen, though, then we ought to grant Jelurida the same courtesy and 
assume that they'll be able to carry out their own scaling plans. In particular, one potential 
improvement on the Ardor roadmap is to confine child chain transaction processing to 
dedicated subnets of the Ardor network. It seems to me that this would accomplish a similar 
computational scaling to Lisk, while preserving Ardor's substantial advantage in reducing 
blockchain bloat.

In conclusion, Lisk's mainchain/sidechain architecture could potentially help it scale to 
accommodate a large number of dapps that could interact in interesting ways, but right now 
there seems to be a lot of uncertainty in the technical details. Ardor's approach is technically 
quite diNerent but solves some of the same problems, namely blockchain bloat, potentially 
computational scaling, and the ability to transact easily between separate chains.

It will be very interesting to see how Lisk develops in the next two or three years, but then again, 
by that time Ardor will have been live for a long time already.

12



 NEM/Mijin/Catapult

Ardor vs The Competition Pt 2

This week I studied NEM, a public blockchain similar to Nxt in many ways. As I’m primarily
interested in each blockchain project’s approach to scaling, I also researched Mijin, a version of 
NEM for private blockchains, and Catapult, a rewrite of Mijin which promises large performance 
gains and which will also be incorporated into future releases of NEM.

NEM
Although NEM’s core developers abandoned their initial plan to start NEM as a fork of Nxt, 
choosing instead to start the project from scratch, NEM and Nxt are still fairly similar. Like Nxt, 
the NEM platform provides a predefined set of allowed transactions which applications can use 
as building blocks to create more complex features, as opposed to using a low-level scripting 
language to construct transactions, like Bitcoin or Ethereum.

Both platforms support a variety of “blockchain 2.0” features, like sending messages, creating 
and transfering assets, and sending transactions requiring the approval of multiple accounts (m-
of-n multisig). And both platforms expose their functionality through HTTP-based APIs, so 
developers can use virtually any language to write applications for them.

13



Despite these similarities, NEM also has some notable diNerences compared to Nxt.

Perhaps the most fundamental one is its novel consensus algorithm, called proof-of-
importance. This algorithm is similar to proof-of-stake, except the probability that an account 
may harvest (i.e., forge) the next block depends not only on its stake of XEM, which is the native 
coin on NEM, but also on how recently it has transacted with other accounts and how much XEM 
was exchanged. Accounts that hold a large stake of XEM and which transact frequently and in 
high volume harvest more blocks than accounts with less XEM or accounts which only rarely 
transact.

The authors of the NEM Technical Reference argue that, compared to proof-of-stake, the proof-
of-importance algorithm gives somewhat less weight to the wealthiest accounts when 
determining the right to forge/harvest the next block (Section 7.8). Proof-of-importance is also 
central to NEM’s spam filter, which requires that an attacker not only control a lot of accounts, 
which is easy to do, in order to spam the network with a large number of unconfirmed 
transactions, but also to hold a large stake in each account and transact frequently with other 
high-importance accounts.

In my view, another main diNerence between NEM and Nxt is the extent to which each platform’s
“blockchain 2.0” features are integrated directly into the API. For example, NEM’s assets, called 
“mosaics,” share several features with the Nxt Monetary System’s currencies, but NEM does not 
have a built-in decentralized exchange for mosaics. (As a side note, the NEM Foundation has 
contracted with Blockchain Global to create a traditional, centralized exchange featuring 
mosaic-based ICO tokens.) Similarly, while you could certainly build a decentralized 
marketplace on top of NEM where users could buy and sell goods and services, NEM does not 
have such a marketplace built into its API the way that Nxt does.

Finally, one subtle but very important diNerence between NEM and most other blockchains, 
including Nxt, is the way that it handles multisignature transactions. Instead of allowing any 
account to generate a multisig transaction, NEM introduces the concept of a multisig 
account and requires that all multisig transactions originate from such accounts. Any co-
signatory on the account can initiate a transaction from it, and the transaction is only executed 
if a suNicient number of the other co-signatories approve it.

At first this might appear to be a limitation, since it requires a separate multisig account for each
set of co-signatories a user wants to cosign with, but it has two key advantages: the multisig 
account is a full account, capable of receiving payments, messages, and mosaics, for example; 
and co-signatories can be added and removed, so custody of the multisig account can be 
transferred. It is possible to create a “1-of-1” multisig account, i.e., an account with a single 
custodian who can transfer it to a diNerent custodian if desired. In this way, multisig accounts on
NEM can act like transferable containers for XEM, mosaics, and messages.

One particularly impressive application of this concept is a notary service built on NEM 
called Apostille. With Apostille, the process of notarizing a document looks like this:

14

https://nem.io/wp-content/themes/nem/files/ApostilleWhitePaper.pdf
https://www.nxter.org/nxt-core-marketplace/
https://nem.io/wp-content/themes/nem/files/NEM_techRef.pdf
https://nxtwiki.org/


1. Hash and sign the name of the document.
2. Create a multisig account for the document derived from the resulting signature.
3. Hash and sign the contents of the document.
4. Send a message containing the result to the document’s multisig account.

Note that the last step also attaches a timestamp to the document, since the transaction that 
transfers the document’s signed hash to the multisig account is recorded on the blockchain.

As an example of a potential application of Apostille, the authors of the white paper consider a 
case where the notarized document is a car title. Ownership of the car can be transferred by 
changing co-signatories on the multisig account that contains the title; messages describing 
maintenance and repairs can be sent to the multisig account to record the car’s service history; 
and mosaics issued by governments or insurers could attest to payment of fees. In this way, the 
multisig account represents both the car itself and the history of other accounts’ interactions 
with it.

Anyway, that’s quite enough about NEM. Next, Mijin.

Mijin
At a high level, Mijin is a version of NEM that three of the core NEM developers and a company 
called Tech Bureau developed as a private, permissioned blockchain product. Like any private 
blockchain–and in contrast to NEM, which is public–a Mijin blockchain is owned and controlled 
by a central authority, such as a company.

This isn’t the place for a full debate about the utility of private blockchains, but as Mijin and 
Catapult are an important part of the NEM ecosystem, please indulge me for a minute. In my 
opinion, the more “private” a private blockchain becomes, the less useful it is. While I can see a 
case to be made for “consortium” blockchains, where a handful of independent organizations 
who don’t necessarily trust each other cooperate to secure the network against abuses by any 
one member of the group, I have trouble seeing the value in a blockchain controlled by 
a singleauthority. In my view, a blockchain without trustless consensus is basically just an 
extremely slow, extremely ineNicient database.

I know there are plenty of people who disagree with me, though, so for the remainder of this 
post I’m going to assume private blockchains have value and that there is a market for them, 
especially in financial services, which seems to be the main industry that Tech Bureau intends 
for Mijin to serve.

There is not nearly as much information about Mijin available on the internet as there is about 
NEM, but I did learn some interesting facts that hint at its potential. For one thing, although Mijin
and NEM are completely separate projects, Mijin does share the NEM API (or at least the two APIs
overlap substantially), which suggests that it will be relatively easy for developers to write 
applications that run on either platform. The common API might also facilitate interactions 
between Mijin chains and the public NEM chain, but I haven’t found any information about the 
details of those interactions.

15



Additionally, the Mijin website states that Mijin will support smart contracts, though 
the Catapult white paper seems to slightly contradict that statement when it says, “the 
approach here is to make the smart contract an external component, whether centralized (i.e., 
status quo with existing systems) or decentralized. The outputs of these smart contracts will 
then enter their transactions into the ledger through a secure transaction process.” To me, this 
implies that the contracts themselves will be neither stored on the blockchain nor executed by 
all nodes on the network.

Speaking of Catapult…

Catapult
Catapult is a rewrite of Mijin with a focus on increasing the rate at which transactions can be 
confirmed. Judging from the white paper (linked above), the first deployments of Catapult will 
be at banks and other financial institutions, where the author envisions it will replace 
patchworks of “disjointed monolithic systems” that he says are commonly used today. 
Eventually, the developers also plan to integrate Catapult into NEM to facilitate scaling the 
public blockchain as well.

Like Mijin, Catapult is currently closed-source and many technical details are not public. I was 
able to find some good information digging around the NEM blog, though, especially in this 
thread by one of the developers.

Catapult divides the work that the network does among three types of nodes:

• P2P nodes, which add new blocks to the blockchain and maintain consensus 
about its state;

• REST nodes, which present client applications with all the features they can use 
from the Catapult API; and

• API nodes, which, like P2P nodes, store the blockchain and can read directly from 
it (I think), but which do not add blocks to it. These nodes serve data to the REST 
nodes to fulfill client applications’ requests.

This breakdown appears to roughly correspond to the three-tier architecture commonly used 
for web applications, where the blockchain (P2P nodes) is the database, the REST nodes are the 
front-end, and the API nodes handle the business logic of interpreting and interacting with data 
in the database.

If this analogy is correct, then presumably the goal of this architecture is to allow each tier to 
scale independently. Especially for a private blockchain, the optimal number of P2P nodes used 
to establish consensus might be much smaller than the number of REST and API nodes required 
to handle all of the requests that applications send to the network. Delegating these 
responsibilities to separate nodes on the network should allow nodes of each type to be added 
or removed as needed to optimize performance.

16

https://nem.io/wp-content/themes/nem/files/catapultwhitepaper.pdf
http://mijin.io/en/about-mijin
https://forum.nem.io/t/stories-from-the-dev-front-memoir/2641
https://forum.nem.io/t/stories-from-the-dev-front-memoir/2641


Apart from this new architecture, Catapult also makes some other optimizations to improve 
performance. Whereas Mijin and NEM are written in Java and use HTTP for communicating with 
full nodes, Catapult is being written in C++, and communication between at least the API nodes 
and REST nodes uses full-duplex sockets (via ZeroMQ), potentially allowing for lower latency 
than HTTP.

A performance test of three Catapult nodes located in the same datacenter and configured to 
service requests from 10.8 million accounts showed that the network was able to process just 
over 3,000 transactions per second. It isn’t completely clear from the press release, but it sounds
like each of the three nodes in this test played all three roles: P2P, API, and REST. Confusingly, 
the accompanying diagram appears to refer to API nodes as “blockchain data ingestion servers” 
and to REST nodes as “API gateway” servers.

Compared to Ardor

How does NEM compare to Ardor, then?

Really, there are (at least) two separate questions: how do NEM’s features compare to Ardor’s 
features? And how does NEM’s approach to scaling compare to Ardor’s approach?

Since Ardor (the platform, not the parent chain) will support all of Nxt’s current features, the 
comparisons I noted above between NEM and Nxt apply equally well to Ardor.

In particular, Ardor’s child chains will have at their disposal a somewhat larger variety of built-in 
transaction types that support a richer set of features.

For example, NEM does not natively support a peer-to-peer exchange for mosaics, dividend 
payments to mosaic holders, transactions conditioned on votes by mosaic holders (or most of 

17

https://www.nxter.org/ardor-blockchain/
http://mijin.io/en/814.html


Nxt’s phased transaction types, for that matter), account properties, a decentralized 
marketplace, or anything like Nxt’s shuNling and alias systems.

Ardor’s parent-chain/child-chain architecture will add some extra functionality, too.

In particular, users will be able to exchange diNerent child chain tokens for one another directly, 
without first converting to ARDR. This will be especially useful on pegged child chains, where 
users will be able to trade dollar-pegged coins directly for bitcoin-pegged coins (for example), 
whereas on NEM, somebody holding a dollar-pegged mosaic would have to sell it for XEM, then 
buy a bitcoin-pegged mosaic.

These diNerences notwithstanding, NEM still oNers a rich set of features that application 
developers can use in interesting ways. Perhaps the best example is Apostille’s creative use of 
NEM’s unique multisig accounts. I’m not sure how easy it would be to replicate that kind of 
functionality on Ardor.

[EDIT: Lior YaNe, core dev and co-founder of Jelurida, made the following comment:

With NXT this can be achieved by issuing a singleton asset for each license registration 
and sending it between accounts. ]

On the question of how to scale, the two platforms diNer much more dramatically.

Catapult’s approach, which NEM will eventually incorporate, is twofold: a new three-tier 
architecture to distribute the network’s responsibilities among three specialized types of nodes; 
and a series of application-level optimizations, e.g., using C++ instead of Java. We will need to 
defer judgment of the latter approach until additional benchmarking tests are available, but we 
can still cautiously speculate about the implications of the new architecture.

The biggest advantage seems to be for private blockchains, where the owner can fine-tune the 
quantities of the three types of nodes and the topology of the network to optimize throughput. 
Moreover, in such a context, blockchain bloat isn’t as severe a problem as it is for a public 
blockchain since companies can easily dedicate terabytes of storage on their servers to storing 
the blockchain.

The improvement in NEM’s performance with this new architecture, on the other hand, is much 
harder to predict. It is not clear whether each peer on the network would have to run all three 
services (P2P, API, REST) or just one of the three. In the former case, the scaling advantage to the
new architecture would presumably be lost. In the latter case, the classic trade-oN between 
speed (fewer P2P nodes, more API and REST nodes) and security (greater fraction of P2P nodes) 
would remain. And since nobody could control the number of each type of node on a public 
network, the question of what the optimal balance is would be moot.

In contrast, Ardor’s design does not try to achieve the highest possible throughput, at least 
initially. Rather, Ardor’s main scaling goal is to greatly reduce the size and rate of growth of the 
blockchain. It does this using a unique parent-chain/child-chain architecture, where all nodes on

18

https://nxtforum.org/core-development-discussion/current-1-7-changelog/
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf


the network validate all transactions, but only those belonging to accounts holding the parent 
chain coin (ARDR) forge. Since the child chain coins can’t be used to forge, the child chains’ 
transaction history is irrelevant to the security of the network and can be pruned away.

It is worth noting, however, that computational scaling is on the Ardor roadmap.

Specifically, it is possible that child chain transaction processing will be delegated to separate 
subnets of the Ardor network in the future, allowing most nodes to ignore most transactions.

Conclusion
Ardor and NEM both oNer rich, largely overlapping sets of features.

Overall, my impression is that developers will probably be able to build similarly complex 
applications on either blockchain with comparable ease. In that sense, the two platforms are 
direct competitors.
In their approaches to scaling, though, Ardor and NEM are quite diNerent.

While Catapult will likely achieve a significant improvement in the rate that private blockchains 
can confirm transactions, I am somewhat more skeptical of the performance improvement that 
can be achieved on a public blockchain like NEM using the same approach.

Ardor, on the other hand, does not attempt to address the computational scaling problem (for 
now), but has found a very eNective solution to the problem of blockchain bloat.

I suppose time will tell whether computational scaling or blockchain bloat is ultimately going to 
pose the biggest long-term problem for blockchain tech, and time will also tell whether either 
platform has found an adequate solution.

19

https://www.jelurida.com/ardor-roadmap


 IOTA

Ardor vs The Competition Pt 3

This week I studied IOTA, a distributed ledger that doesn’t use a blockchain.

Why Compare Ardor and IOTA?
At first blush, IOTA is about as diNerent from Ardor as a distributed ledger can be. It uses a 
directed acyclic graph (DAG), which its developers call “the tangle,” to represent the history of 
transactions, instead of storing transactions on a blockchain. It is intended to be used primarily 
for machine-to-machine microtransactions on the Internet of Things (IoT), a vision enabled by 
the fact that IOTA requires no transaction fees. And it doesn’t (yet) support the “blockchain 2.0” 
features that form a core part of Ardor’s appeal. On the surface, it doesn’t really look like a 
competitor to Ardor.

So why include IOTA in a series entitled “Ardor vs. the Competition”?

As I’ve mentioned before, my main interest with this series is in exploring diNerent distributed 
ledgers’ approaches to scaling, and this is where the IOTA community has made some 
extraordinary claims. As I learned more about IOTA to better understand how it scales, I 

20

https://iota.org/


eventually came to the conclusion that IOTA and Ardor oNer complementary (or more bluntly, 
opposite) solutions to the scaling problem:
Ardor dramatically reduces blockchain bloat but requires all nodes of the network to agree 
about the strict ordering of transactions; whereas IOTA achieves potentially higher throughput 
by relaxing the consensus rules a bit, allowing temporary discrepancies between transactions, 
but faces a significant challenge in coping with the growth of the tangle. These tradeoNs, plus 
what I learned about the security of the tangle, seemed interesting enough to warrant a post in 
this series. 

AEer this post, I plan to shiE my focus away from scalability and towards features and market fit.
Stratis, Ark, and Waves are on the agenda, but I’m not sure of the order, yet.

The Tangle
Without a doubt, the key distinguishing feature of IOTA is the tangle.

IOTA’s other unique features, such as its lack of transaction fees, the fact that transactions are 
not strictly ordered but still eventually consistent, and the notion that (some) spam 
actually increases the throughput of the network, all stem directly from the way the tangle 
works.

For this reason, and also because I want to sidestep at least some of the recent controversy 
surrounding the IOTA project, I will try to focus primarily on understanding and evaluating the 
tangle itself, rather than picking apart the details of IOTA’s specific implemetation of it.

The tangle is a directed acyclic graph whose vertices represent individual transactions, and 
whose edges represent “approvals” of previous transactions. Each time a node submits a new 
transaction to the network it must choose two previous transactions to validate, which it 
references in the new transaction it submits. As the new transaction permeates the network, 
each node adds it to its local copy of the tangle, with one edge pointed to each transaction that 
the new transaction approved.

I tried my best, but this description is probably confusing. This diagram should help. Each 
square represents a transaction, and the arrows that point from each transaction to two others 
represent that transaction’s approval of the two earlier ones. The genesis transaction is 
somewhere far oN the leE side of the diagram, and the newest transactions, called “tips” in 
the white paper, are on the right side, shaded in gray.

21

https://www.docdroid.net/mWTNlgd/iota1-2.pdf
https://cdn-images-1.medium.com/max/800/1*bMMGTt8UUIKoVGQCo6VL1g.png
https://www.nxter.org/category/ardor-vs-the-competition/
https://www.jelurida.com/


What does it mean to validate, and hence approve, a transaction? Conceptually, the node doing 
the validation must start at the two transactions that it is validating and walk all paths back to 
the genesis transaction, ensuring that it never encounters a contradiction (e.g., double-spend, 
insuNicient balance, or the like). If there is a contradiction, it chooses another pair of 
transactions to approve, knowing that no other node would ever approve the transaction it is 
submitting if it had approved a set of inconsistent transactions.

Notice that this means that each new transaction not only directly approves each of the two 
transactions it has chosen to validate, but also indirectly approves the transactions that those 
two approve, and the transactions that those transactions approve, and so on all the way back 
to the genesis. This is part of the basis for “eventual consensus” on the tangle.

In case you’re wondering about the computational burden of doing this validation, in practice it 
can be optimized substantially. Notice from the figures on this page that as you walk the tangle 
from the tips (far right) towards the genesis, you eventually reach a point past which all 
transactions are (indirectly) approved by all tips. In these figures, transactions approved by all 
tips are colored green. You could, therefore, cut the tangle across arrows that point to green 
transactions, validate the paths from those particular green transactions to the genesis a single 
time, cache the results, and from that point forward only validate from your new transaction 
back to those green transactions. This optimization saves you the time of validating the entire 
tangle every time you submit a transaction, and also allows the tangle to be pruned. More on 
that below.

Consensus
One very interesting feature of a tangle-based ledger like IOTA is that nodes that receive new 
transactions from their peers don’t have to immediately validate them. In fact, the tangle can 
temporarily contain contradictory transactions. Eventually, though, a node must decide which 
of the contradictory transactions to approve (possibly indirectly) as it adds a new transaction.

How does it choose between conflicting transactions? Assuming that each transaction is valid if 
considered separately, then the short answer is that a node could choose to approve either one. 
It has an incentive to approve the one that the rest of the network will build on, though, so that 
its own transaction will eventually be approved, too. Most of the nodes on the network are 
assumed to run the reference algorithm for selecting transactions to approve, so in the event of 

22

https://forum.iota.org/t/iota-consensus-masterclass/1193


a conflict, a node has an incentive to choose the transaction that the reference algorithm 
selects.

In order to understand the reference algorithm, it is important to first understand the concept of
the cumulative weight of a transaction.

Each node that submits a new transaction must do some proof-of-work (PoW), which 
determines the “own weight” of the transaction. The cumulative weight of a transaction is then 
its own weight plus the own weights of all transactions that have directly or indirectly approved 
it. In a general tangle the node can decide how much work to do for a transaction, but in IOTA all
transactions require the same PoW and thus have the same own weight. As a result, the 
cumulative weight of a transaction is proportional to the number of other transactions that 
directly or indirectly approve it.

What, then, is the reference algorithm? The author of the white paper calls it Markov-Chain 
Monte Carlo (MCMC, see section 4.1), which is a fancy way of saying that it is a random walk 
along the tangle that favors paths with greater cumulative weight. This post is already getting 
long, so I’ll skip the details. SuNice it to say that, when there are conflicting transactions, the 
MCMC algorithm resolves the conflict by tending to choose whichever transaction has the 
greater cumulative weight behind it. Eventually, one subtangle becomes dominant and the 
other is orphaned. This is analogous to the mechanism that blockchains use to resolve forks, 
and the cumulative weight of a transaction in IOTA is a rough measure of its finality in the same 
way that adding blocks to a blockchain confirms previous transactions with greater and greater 
certainty.

By the way, the fact that nodes don’t immediately need to validate each new transaction 
received from their peers has big implications for performance. Each node does less work this 
way, validating transactions only when it submits a new transaction, and taking for granted that 
transactions that are indirectly approved by all tips have already been validated by the rest of 
the network. Also, validations run in parallel across the network, as diNerent nodes choose 
diNerent subsets of transactions to approve.

Security
So far I have mostly just regurgitated the information found in the IOTA white paper. The issue of
the security of the tangle, on the other hand, is where things get a lot more interesting. While I 
definitely recommend reading the analysis in the white paper of diNerent attacks on the tangle–
and the rest of the white paper, for that matter, because it is very well written–I won’t discuss 
most of that analysis here.

Instead, I want to focus on the most obvious threat, which is a 51% attack. The IOTA devs 
actually refer to it as a 34% attack, for reasons that I’m not sure I understand. I suspect it’s 
because an attacker who waits for a fork to occur naturally only needs enough hashpower to 
out-compute the nodes on each branch of the fork–i.e., more than 50% of the rest of the 

23



network’s hashpower. Anyway, the exact number isn’t important, and for the remainder of this 
article I will use the term “34% attack.”

With IOTA, a 34% attack would look roughly like this. An attacker issues a transaction that 
spends some funds, represented by the rightmost red dot, then computes (or perhaps has 
precomputed) his own “parasitic” subtangle, which anchors to the main tangle somewhere 
upstream of his transaction and which contains a double-spend transaction, represented by the 
leEmost red dot. His goal is to add enough cumulative weight to his parasitic tangle to convince 
the MCMC algorithm to orphan the main tangle and follow the parasitic one.

Hopefully, the analogies to the blockchain are clear so far, because there is one more important 
one. Like a PoW blockchain, the tangle is secured by the current hashpower of the network, 
since this hashpower is what adds cumulative weight to the legitimate tangle. Unlike a PoW 
blockchain, though, nodes on IOTA only do PoW when they submit transactions. The security of 
the tangle, therefore, depends only on the transaction rate and the amount of PoW per 
transaction. Take a second to let that idea sink in because it is absolutely central to 
understanding the security of the tangle.

Because the IOTA network is currently small and the transaction rate is low, the IOTA team has 
established a single trusted node, called the Coordinator, that is ultimately responsible for 
deciding the current state of the tangle. Its purpose is to protect against 34% attacks, among 
other attacks. I’m not going to spend any more time on it, but I encourage you to read this 
critique and the devs’ responses, and draw your own conclusions about whether IOTA can be 
called decentralized while running under the supervision of the Coordinator.

Let’s see if we can come up with an order-of-magnitude estimate of how secure the network 
could be without the Coordinator. A recent stress test achieved well over 100 transactions per 
second (tps) on a small test network. The team suggested that 1,000 tps is achievable. To be 
generous, let’s assume that IOTA will eventually scale to 10,000 tps. I don’t know what the 
current PoW requirement on IOTA is, but let’s suppose that the average IoT device is 
approximately a Raspberry Pi and it runs at 100% CPU for 10 seconds to do the required PoW. 
Again, I’m trying to be generous; many IoT devices are considerably less powerful than a 
Raspberry Pi, and pegging the CPU for 10 seconds for each transaction would probably be a 
dealbreaker.

24

https://twitter.com/DomSchiener/status/858379721029111808
https://medium.com/@DavidSonstebo/co-founder-sergeys-response-2bd9284e523e
https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://ip.bitcointalk.org/?u=http%3A%2F%2Fs020.radikal.ru%2Fi703%2F1511%2F5f%2F660fb5e47df0.jpg&t=580&c=J7ZAkXk_xmoCkA


With these assumptions, we conclude that the average computational power securing the 
network is roughly 10,000 x (# of computations by Raspberry Pi in 10 s) per second, or 
equivalently, 100,000 times the computational power of a single Raspberry Pi. There are a lot of 
nuances to properly benchmarking computers, but we’re not concerned about factors of two or 
three–we’re just going for an order-of-magnitude estimate–so we’ll use some numbers I found 
on the internet.

A Raspberry Pi3 can achieve hundreds of MFLOPS (megaflops, or millions of floating-point 
operations per second), while high-end GPUs clock in at thousands of GFLOPS (gigaflops, 
or billions of FLOPS), a factor of 10,000 greater computing power. So in our hypothetical 
scenario, an attacker with ~10 GPUs could out-compute the entire network. Throw in another 
factor of 10 because I was being sloppy–maybe integer operations are a bit slower on the GPUs 
than floating-point operations, for example–and you still only need 100 GPUs to execute the 
attack.

I’m sure there are plenty of holes to poke in this analysis. Perhaps IOTA won’t run on devices all 
the way at the edge of the network, for example. Instead, it might run on the gateways and 
routers that those IoT devices connect to, which are typically much more powerful.

Still, the point I’m trying to make is that PoW successfully secures blockchains like Bitcoin and 
Ethereum because it isn’t tied to the transaction rate, or any other factor besides the economic 
value of the network. As the value of the mining reward (in fiat currency) increases with the price
of Bitcoin, miners add more hardware and consume more electricity to mine it. The economic 
incentive to mine ensures that the amount of hashpower securing the network increases with 
the network’s monetary value.

With IOTA, in contrast, there is no economic incentive to secure the network. Moreover, the 
hashpower securing the network is tied directly to the transaction rate, which naturally has 
some upper limit dependent on bandwidth and network topology.

On this last point, the IOTA developers have made a creative argument, not included in the 
white paper, that bandwidth limitations and network topology actually improve the security of 
the network. I haven’t found an oNicial statement of it anywhere, but aEer some digging I 
stumbled upon this Slack conversation, which is the most complete defense I could find.

Essentially, one of the IOTA developers (specifically Come-from-Beyond, a.k.a. Sergey 
Ivancheglo, possibly a.k.a. BCNext, also one of the original creators of Nxt), argues that the IOTA 
network will consist of IoT devices peered exclusively with their nearest neighbors in a meshnet 
topology, and that an attacker will not even have the option of peering with more than a very 
small number of devices on each such mesh. That is, the vast majority of devices will not be 
accessible from the internet or some other “backbone” of the network, and the only way to send
messages to them will be through the mesh of other devices.

The general idea is that the mesh as a whole will be capable of achieving a high throughput, but 
each individual link in the mesh has a low enough bandwidth that an attacker would easily 

25

https://www.nxter.org/bcnexts-nxt/
http://www.tangleblog.com/wp-content/uploads/2017/06/unfiltered_convo_tangle_security_june_17.pdf
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#GeForce_10_series
https://www.element14.com/community/community/raspberry-pi/blog/2016/02/29/the-most-comprehensive-raspberry-pi-comparison-benchmark-ever


saturate it by trying to add enough transactions to convince the network to follow his parasitic 
subtangle. Since the attacker only has a few entry points into the mesh, he saturates all of them 
before his parasitic tangle accumulates enough weight for his attack to succeed.

I’ll let you draw your own conclusions about this argument. I personally don’t think the IOTA 
team has made enough details public to thoroughly evaluate it.

Speaking of bandwidth limitations, let’s talk about scaling.

Scalability
Because each node must validate two other transactions before submitting its own transaction, 
the IOTA team likes to point out that spam actually tends to make the network more eNicient. 
Other members of the IOTA community get carried away with this point, sometimes even 
making the absurd claim that IOTA is “infinitely scalable.”

Every node on the IOTA network must eventually receive every transaction in order to maintain 
a globally consistent tangle. Broadcasting transactions to remote nodes takes time, though, and
if the transaction rate is high enough that a node receives a lot of transactions from nearby 
nodes before it receives the next transactions from distant nodes, the MCMC algorithm will 
continue to select tips submitted by nearby nodes. Eventually the tangle splits, with only nearby 
nodes transacting on the local copy of the tangle and remote nodes transacting on their own, 
divergent copy.

So bandwidth and network topology must place some limitations on the transaction rate of 
IOTA if the tangle is to be consistent across the entire network. We will have to wait for more 
stress tests to learn what these limitations are.

Additionally, like all distributed ledgers, IOTA must grapple with bloat. Each transaction on IOTA 
is approximately 1.6 kB in size, so a transaction rate of 100 tps would grow the tangle at a rate of 
160 kB per second, or about 14 GB per day. Needless to say, that’s an unrealistic storage 
requirement for an IoT device.

IOTA currently solves this problem by taking periodic snapshots of the tangle, which map its 
current state into a new genesis transaction, allowing the transaction history to be pruned away.
In the limit of very frequent pruning, a node would only have to store enough of the tangle to be 
able to run the MCMC algorithm.

Syncing a new node with the network is a diNerent story, though. Either the node must 
download the latest snapshot from a trusted peer, or it must start at the original genesis 
transaction and work its way forward through the entire tangle. There is no way to 
trustlessly and eNiciently join the network.

26

https://iotasupport.com/whatisiota.shtml


Finally, it’s worth noting that the IOTA team has proposed a type of horizontal partitioning of the
tangle that they call a “swarm,” where many nodes together store the complete tangle but no 
one node stores all of it. Unfortunately, there aren’t many details yet on how this works.

Compared to Ardor

So what does any of this have to do with Ardor?

In my opinion, there are two main comparisons to draw, namely on the issues of security and 
scalability.

Regarding security, it isn’t clear to me that IOTA could possibly reach a high enough transaction 
rate to be considered secure without the Coordinator, given the monetary value of even the 
current network, without choosing a very high PoW requirement.

Ardor, in contrast, has the advantage that its child chains are all secured by the single parent 
chain.

A “small” child chain wouldn’t need a trusted node like IOTA’s Coordinator to protect it because 
consensus is established by the entire network and recorded (via hashes of child chain blocks) 
by forgers on the parent chain.

On scalability, IOTA and Ardor both currently share the requirement that each node of the 
network process all transactions. With IOTA, this simply means adding transactions to the 
tangle, which is computationally cheap, whereas, with Ardor, every node must validate every 
transaction. Moreover, the clever design of the tangle ensures that the confirmation time for a 
transaction actually decreases as the network gets busier. I would not be surprised to see IOTA 
achieve higher throughput than Ardor as both networks grow.

On the other hand, IOTA faces a tremendous challenge in combating tangle bloat if it is ever to 
achieve hundreds of transactions per second, whereas Ardor has largely solved this problem.

27



Finally, it’s worth noting that a proposal on the Ardor roadmap would delegate child chain 
transaction processing to dedicated subnets of the network. This would potentially achieve a 
computational gain similar to IOTA’s “swarming” proposal, possibly allowing similarly high 
throughput.

Final Thoughts
If you’ve read this far (thank you!!) and were already familiar with IOTA, then you’ve 
undoubtedly noticed that I leE out a lot of details, including its homebuilt hashing algorithm, 
the deliberate flaw in this algorithm that Come-from-Beyond included as a copy-protection 
mechanism, the use of ternary encoding, and the mysterious Jinn processor that will provide 
hardware support for IOTA in IoT devices. In the course of my research, I’ve formed fairly strong 
opinions on all of these things, but I was reluctant to share them here for two reasons.

First, I don’t have suNicient information to make objective statements on these issues. I’m not a 
cryptographer, and I know next to nothing about ternary computing or Jinn. The best I could do 
would be to oNer subjective judgments of the design decisions the IOTA team made, but that 
would have simultaneously weakened the focus of this article and opened it to criticism from 
people who have made diNerent subjective judgments.

Secondly, and more importantly, I’m more interested in the fundamental concepts behind the 
tangle than IOTA’s specific implementation of it. Regardless of whether IOTA succeeds or fails, 
the tangle is a beautiful idea and deserves all the attention we can muster.

So what can we say about the tangle, then? While I’m positively enamored with the elegance of 
its design and the nuances of its consensus mechanism, at the end of the day I’m afraid I’m quite
skeptical of its suitability for the Internet of Things. Drop that aspect, increase the PoW 
requirement by several orders of magnitude, and find a way to tie the PoW threshold to the 
monetary value of the network without cutting ordinary users oN from their funds, and I think 
the tangle has tremendous potential as a distributed ledger.

The last missing piece is how to cope trustlessly and eNiciently with bloat, a problem that Ardor 
have solved extremely well. Perhaps somebody will find a way to combine the best elements of 
both designs at some point in the future. A lot could happen by then, especially in cryptoland.

28

https://www.nxter.org/ae-Jinn-3061160746493230502/


 Waves

Ardor vs The Competition Pt 4

Until now, one of my main goals with this series has been to survey diNerent approaches 
to scaling a distributed ledger. This week and for the next couple of posts, though, I’m shiEing 
my focus slightly towards the business side of blockchain technology. I’ll attempt to explore the 
real-world problems that blockchains can solve and the ways that diNerent projects have 
positioned themselves to suit their target markets.

These subjects are a bit outside my comfort zone, so I’ll thank you in advance for your patience 
with me in case I say something ignorant or naive. And as always, I greatly appreciate 
constructive criticism. :)

This disclaimer is especially important this week, because this week I studied Waves. 

As a newcomer to Nxt, I’ve read just enough about its history to know that the founder of Waves, 
Sasha Ivanov (a.k.a. Coinomat on nxtforum.org), had been an active member of the Nxt 
community until the turbulent period of early 2016, at which time he leE to found Waves. I won’t 
attempt to rehash the debate over Ardor and the future of Nxt, which I understand ended with 
many asset issuers like Sasha leaving the community, but if you’re interested I’d highly 
recommend apenzl’s summary in SNAPSHOT and the references therein.

29

https://www.nxter.org/snapshot-nxt-unsurpassable-blockchain-solutions/


Instead, for this post I’ll mostly ignore the histories of Nxt and Waves, and will approach both 
projects with an open mind and a view towards the future. I do think there would probably be 
some value in a proper historical analysis, but I simply am not qualified to oNer one.

With that out of the way, let’s talk about Waves.

Waves
At first glance, Waves looks a lot like a stripped-down version of Nxt. It is primarily a 
decentralized exchange (DEX), inspired by and conceptually similar to the Nxt Asset Exchange. 
Like Nxt, it uses a proof-of-stake consensus algorithm and allows users to lease their balances to
other accounts in order to forge in pools. It recently added a way to associate a human-readable 
alias to an account number, partially replicating the functionality of Nxt’s Alias System. Even a 
couple features still in development–namely, a voting system and a way to send encrypted 
messages–duplicate functionality that Nxt already oNers.

At the same time, Waves is missing many of Nxt’s most powerful features. For now, it doesn’t 
support anything similar to Nxt’s phased transactions or account control options, for example, 
though it is worth noting that both smart contracts and multisig transactions are on the agenda.

Additionally, the white paper suggests that crowdfunding will be one of the main uses of the 
Waves platform, but tokens on Waves lack the customizable properties that make 
Nxt’s Monetary System currencies so useful for this application. For example, the Monetary 
System oNers the ability to condition the transfer of funds on meeting a fundraising goal, a la 
Kickstarter, and also the option to restrict trading so as to prevent scalpers from creating a 
secondary market. Using this latter feature, called a “Controllable” currency in Nxt’s 
terminology, it is even possible for issuers to dictate both a fixed asking price and a fixed bid for 
the currency, enabling them to oNer buyers full or partial refunds for their tokens. Crowdfunding
on Waves, in contrast, is limited to issuing a token essentially at the market rate.

These observations notwithstanding, in my opinion it would be a terrible mistake to dismiss 
Waves as just another Nxt copycat with fewer features. For one thing, Waves oNers several key 
features that Nxt and other platforms do not have, which I’ll describe next. Perhaps even more 
importantly, though, the Waves team has built a strong brand and has oNered a clear and 
consistent vision since the platform’s inception. The field is currently so crowded, and 
innovation so rapid, that the combination of a simple, clear message, a strong marketing eNort, 
and a demonstrated ability to deliver on those promises might be even more important to the 
long-term success of a project than the richness or novelty of its underlying technology.

30

https://nxtwiki.org/wiki/Monetary_System
https://blog.wavesplatform.com/waves-whitepaper-164dd6ca6a23
https://blog.wavesplatform.com/road-to-waves-1-0-eafab1e6846f
http://bitscan.com/articles/nxt-account-controls-multi-sig-on-steroids
https://nxtwiki.org/wiki/Phasing
https://nxtwiki.org/wiki/Alias_System
https://nxtwiki.org/wiki/Asset_Exchange


Unique Features
One interesting feature that distinguishes Waves from many other platforms is the design of its 
DEX. It is a hybrid approach that combines a centralized order-matching engine, called the 
Matcher, with decentralized settlement on the Waves blockchain.

When users place orders on Waves, the Waves client sends those orders to central Matcher 
nodes, which maintain the order books for all tradeable pairs. Each new order is either matched 
against existing orders or added to the order book for the pair in question, but either way the 
user who submitted the new order is notified immediately whether the order was filled. It is still 
necessary to wait for the next block(s) to be added to the blockchain to fully confirm the 
transaction, but in the meantime, the user knows with high confidence the result of the order.

This might not seem like a big improvement over a fully decentralized exchange, but from the 
handful of transactions I made on Waves, I must say I was quite impressed by the user 
experience. The ability to see real-time updates to the order book, and to know immediately 
whether my orders were filled, made a bigger diNerence than I had expected.

In principle, any full node can become a Matcher. The lite client currently only connects to 
Matchers at nodes.wavesnodes.com by default, though, so Matchers on the rest of the network 
probably do not see much volume. With new orders transmitted directly to these centralized 
nodes, and only broadcast to the whole network once they have been filled (I think), this design 
allows the order books to remain anonymous. I don’t know for sure how important it is for open 
orders to be anonymous, but it certainly seems like a feature that traders might value highly.

Another distinguishing feature of Waves is the ability to trade any token against any other token 
without first converting to WAVES. Combined with the integrated gateways that issue tokens 
pegged to U.S. dollars, euros, and several cryptocurrencies, this feature enables Waves to 
function as a decentralized foreign exchange market. It also allows token issuers to conduct an 
initial oNering directly in fiat-pegged tokens. With the full client, it is even possible to pay fees in 
tokens instead of WAVES.

Additionally, it is worth noting that there are several features in development or on the roadmap
that also distinguish Waves from other platforms. One is a reputation system that will score 
accounts by their age, transaction history, and other factors. There are not many details yet, but 
the goal is to provide users with at least a rough indication of how trustworthy a given token 
issuer is. The white paper even goes so far as to suggest that the reputation system will serve as 
“some form of decentralized KYC/AML” (know your customer/anti-money laundering) system. 
While it’s diNicult to see how a decentralized reputation system could help issuers 
actually complywith KYC and AML laws, it’s not unreasonable to suppose that it could serve 
some analogous purpose in a blockchain community.

Speaking of compliance issues, Waves has also announced a new project, Tokenomica, that will 
provide a “100% compliant legal framework for diNerent types of token crowdsales, including 
private equity crowdsales.” Unfortunately, that quote from the 2017 roadmap is just about the 

31

https://blog.wavesplatform.com/waves-updated-roadmap-2017-f5d75c8f33c7


full extent of information I’ve been able to find about Tokenomica. My impression is that the 
project is still in its early stages, but it shows that the team is taking regulatory compliance 
seriously.

For completeness, I should probably mention that the Waves team is also planning to 
incorporate smart contracts into Waves. The scripting language will not be Turing complete, and
there will be no equivalent to Ethereum’s concept of “gas,” presumably because there will be no
loops. Beyond these details, there isn’t much other information available yet.

Finally, I must mention the approach that the Waves team has outlined for scaling. It consists 
primarily of two parts: a redesign of the forging process that breaks large blocks into 
“microblocks” to optimize bandwidth usage; and an optimization to how account balances are 
stored–or rather, not stored–that reduces memory requirements for full nodes.

The first of these two proposals, called Waves NG, is based on Bitcoin NG. In a nutshell, once a 
node has won the right to forge the next block, it immediately issues a key block, which is 
usually empty, and then broadcasts microblocks containing transactions every few seconds. The
motivation for this design is that broadcasting one large block each block interval is a much less 
eNicient way to use the network’s bandwidth, and the corresponding spikes in network activity 
place an artificially low bound on the number of transactions that the network can handle. By 
spreading transactions out over a sequence of microblocks, it is possible to increase the average
data rate over the network but decrease the peak data rate, lessening the constraints that 
bandwidth and latency impose on the maximum transaction rate.

The second component of the scaling plan is to implement the ideas described in this paper by 
Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. I admit I haven’t spent 
very much time with it, but the gist is that full nodes will not all be required to store every 
account’s balance of every token in memory in order to validate transactions. Instead, they will 
store a compact digest of this information, and forgers that do store it in full–or some subset of 
it, if they choose to only forge transactions involving specific tokens–will generate cryptographic
proofs that they have updated the account balances correctly. The forgers will then include the 
proofs and an updated digest in the header of each new block. Nodes that have chosen not to 
record the balances of all tokens involved in those transactions will still be able to validate them 
by using their current digest and the forger’s proofs to compute an updated digest, which they 
can compare to the one the forger reported.

The authors argue that this approach can reduce the amount of memory required for a full node 
under realistic conditions by about a factor of four. Moreover, if this optimization is able to keep 
all required information in memory in cases where it would otherwise have to be stored on disk, 
the performance improvement could be far greater – about a factor of 20, the authors suggest.

32

https://eprint.iacr.org/2016/994
https://www.usenix.org/node/194907
https://github.com/wavesplatform/Waves/wiki/Waves-NG-Protocol


Comparison with Ardor
Although a couple of the features described were not present in Nxt, there will be similar 
features available in Ardor.

Specifically, Ardor’s parent-chain/child-chain architecture will allow users to trade all pairs of 
child chain coins, some of which could be pegged to fiat currencies and other cryptocurrencies. 
It will also be possible to price assets in any of the child chain coins, and to pay fees in the child 
chain coin when transacting on a given child chain. It will not be possible to trade assets against 
each other directly, but most of those trading pairs would probably have such low volume that it
wouldn’t really be worthwhile to add this feature anyway.

As for the improvements that the Waves team has made to their DEX by partially centralizing it, it
should be possible to mimic this functionality pretty closely by building a centralized order 
matcher on top of Nxt/Ardor. Indeed, the InstantDEX project accomplished something similar in 
the past, using Nxt to settle transactions in a decentralized manner.

On the subject of scaling, the proposal to reduce in-memory storage requirements for full nodes 
is intriguing, but I wonder whether there might be a small trade-oN with security. (If you’ve read 
the previous articles in this series, then you have probably figured out by now that I always 
suspect that performance improvements entail reductions in security.) In particular, if nodes are
not required to store the current state of every account, and must use the proofs and digest in 
each new block’s header to validate the transactions contained in it, then I assume that means 
that nodes will not be required, nor even will they be able, to validate unconfirmed transactions 
before broadcasting them to their peers. I don’t know the consequences of allowing nodes to 
propagate potentially invalid transactions across the network, but the thought makes me a bit 
uneasy.

Ardor’s approach to scaling is for all nodes to validate all transactions, but for only the minimum
possible amount of information to be permanently recorded on the Ardor blockchain. In 
particular, only those transactions that change the balances of ARDR, the forging token, need to 

33



be stored on the blockchain in order for other nodes to trustlessly verify that each block was 
forged by an account that was eligible to do so. In contrast, the whole history of transactions 
involving only child chain coins and the assets and currencies traded on those child chains 
does not need to be stored on the blockchain, and hence can be pruned away, leaving only 
cryptographic hashes of that information behind. The result is that the blockchain stays much 
smaller and grows more slowly than would be the case if it stored all of this extra information.

Which approach is better depends on whether permanent storage of the blockchain or in-
memory storage of current account balances presents a bigger problem as the two platforms 
grow. I don’t know the answer to this question, but there are a couple of related points that are 
probably worth making. One is that the timescales of the two problems could be quite diNerent: 
I could see an explosion of new assets on the Ardor platform placing an immediate strain on 
memory, whereas blockchain bloat would likely pose a severe long-term problem for Waves, 
especially if it reaches hundreds or thousands of transactions per second, which is the current 
goal. My other thought is that Ardor required an entirely new architecture to implement its 
scaling solution, whereas Waves’s approach will not. It would no doubt be easier for Ardor to 
incorporate Waves’s solution at some point in the future than for Waves to implement Ardor’s 
solution.

Finally, perhaps the most interesting subject in this comparison is the issue of regulatory 
compliance. Waves has positioned itself as a platform for creating and issuing tokens, with a 
special focus on crowdfunding. To that end, the Waves team has indicated that they are taking a 
serious look at the regulatory complications that go along with crowdfunding–which might 
involve selling securities, for example–in order to help users comply with the law. While the 
suggestion that a decentralized reputation system might eventually replace traditional KYC/AML
requirements strains credulity, it could at least help suppress scams and reduce the 
opportunities for bad actors to take advantage of others. In that sense, it might accomplish 
some of the same goals that regulators aim to achieve.

Ardor, for its part, will oNer a couple of enhancements over Nxt that will be quite valuable for 
regulatory compliance. One is the ability to issue assets that can only be traded with a certain 
type of phased transaction, and the other is the addition of a new phased transaction type, 
which allows an account to approve a transaction only if the account has a certain specific 
property. Combining these two features, a user can issue an asset which can only be purchased 
by accounts that have a property that, for example, a KYC/AML-compliant identity provider has 
added to designate that it has verified the owner’s identity.

If your asset represents shares of a company, or a mutual fund, or some other type of security, 
this feature would enable you to prove to regulators that you know who is purchasing your 
tokens. Moreover, if you are a user interested in purchasing those types of tokens, recording a 
proof of your identity on the blockchain via your account’s properties will hopefully allow you to 
spend less time trying to convince businesses that you are who you say you are and that you 
aren’t laundering money.

34



In addition, it will be possible to create child chains that support only a subset of the features 
that the Ardor platform oNers. This will allow child chain creators to disable certain features, 
such as coin shuNling, that might raise red flags with regulators in some jurisdictions.

Conclusion
What, then, do we make of Waves? There is definitely something to be said for choosing one 
problem and trying to solve it better than anybody else can do. Abandoning Nxt’s “Swiss Army 
knife” approach and focusing instead on the single goal of building a great token-trading 
platform no doubt made it easier to pitch, develop, and market Waves. There is also a lot to be 
said for starting oN well-funded, as Waves did with a $16M ICO.

At the same time, though, I’m not sure that an objective comparison of Waves and Ardor could 
conclude that Waves is as technologically mature as Ardor is. (For the record, I have tried to do a 
fair and objective comparison in this article, but I am not claiming that I succeeded. That’s 
ultimately your call.) Nxt is already capable of almost all of what Waves can do, not to mention 
all of the things that Waves cannot do, and Ardor is adding new functionality, too.

Perhaps Ardor’s biggest remaining challenge is to truly sell its vision the way that the Bitcoin 
community and the Ethereum Foundation have sold their visions, and this is where Waves has a 
sizable head start. Being capable of so many diNerent things, but not purpose-built for anything 
in particular, Ardor faces a very diNicult task here. The worst possible outcome would be for 
users and businesses to see it as “just another platform,” or perhaps to fail to grasp the full 
range of what it can do, and to simply ignore it as a result.

As for Waves, I’m excited to see what the future holds. The improvements that it has made to the
Nxt Asset Exchange, though modest in my opinion, have nonetheless distinguished it as a 
formidable DEX. If the Waves team can follow through on their roadmap, Waves will be a fierce 
competitor among exchanges–centralized and decentralized alike.

35



 Stratis

Ardor vs The Competition Pt 5

This week I studied Stratis, a blockchain-as-a-service platform based on the Bitcoin 
protocol.

Stratis
The goal of the Stratis project is to enable businesses to create their own customizable 
blockchains, choosing from a set of prepackaged features. Additionally, the Stratis Group, which
guides the development of Stratis, will oNer consulting services to help businesses find ways to 
use blockchain technology eNectively, and presumably will also help them configure and deploy
custom blockchains on the Stratis platform.

Put this way, Stratis sounds an awful lot like Ardor. But in most of the details–to the extent that 
details about Stratis are available, anyway–the two platforms are quite diNerent. More on those 
diNerences in a bit.

Currently, the Stratis platform comprises several parts:

• NBitcoin, a comprehensive Bitcoin implementation in C# inspired by Bitcoin Core;

36

https://github.com/MetacoSA/NBitcoin


• NStratis, a fork of NBitcoin that adds a proof-of-stake mining algorithm and an 
alternative proof-of-work algorithm;

• the Stratis Bitcoin Full Node, which can run on either the Bitcoin network or the Stratis 
network, and which serves as the basis for the rest of the platform;

• the Breeze Wallet, a simplified payment verification (SPV) wallet for both Bitcoin and 
Stratis that implements TumbleBit to make transactions private; and,

• the Stratis Identity module, which allows third parties to attest to the identity of the 
person controlling a Stratis account.

Note that most of these components are currently in alpha.

Particularly noteworthy in this list is the integration of TumbleBit into the Breeze Wallet.
 The TumbleBit paper is rather dense; if you’re interested in the details, I recommend 
instead this excellent presentation by two of the authors. In a nutshell, TumbleBit uses one-
way payment channels to transfer funds from a set of payers to an intermediary called the 
Tumbler, and from the Tumbler to a set of payees, without any of the parties having to trust one 
another. The key innovation over other payment channel implementations is that TumbleBit 
uses blind RSA signatures in a clever way to prevent the Tumbler from knowing which incoming 
transaction maps to a given outgoing transaction. If many accounts are transacting through the 
Tumbler, then it is impossible to trace the funds in an output account back to the input account 
that sent them. Not even the Tumbler can link the two accounts.

Stratis’s Breeze Wallet provides TumbleBit functionality for both Bitcoin and Stratis, making it 
useful to a much larger audience than would be the case if it worked only on the Stratis network.
Moreover, since the TumbleBit protocol uses oN-blockchain payment channels, it is possible to 
make many payments through the Tumbler in approximately the same amount of time as it 
takes to make a single payment.

The Stratis Identity module is still at the proof-of-concept stage, but it is functional nevertheless.
Users can log into their MicrosoE, Google, or LinkedIn accounts using the Stratis Identity mobile 
app, and these services will notify Stratis of the successful login. A special account owned by 
Stratis then records an attestation to the successful login by hashing the corresponding 
personally identifiable information (e.g., name and email address) and storing it on the Stratis 
blockchain.

An attestation by Google that a person owns a particular Gmail account is perhaps not the most 
useful identity service, but it is easy to see how the same mechanism could be used to prove 
ownership of some piece of information that is much more diNicult to verify. For example, a 
government agent might attest that somebody presented a valid photo ID, together with a name
and address. If a user can provide the name and address that match the hash on the blockchain, 
that would probably convince a service provider that the user also owned the corroborating 
photo ID, since the government agent attested to all three pieces of information together.

TumbleBit integration in the Breeze Wallet and the Stratis Identity module are two examples of 
the kinds of features that Stratis intends to oNer on their platform. I’m not completely sure I’ve 
grasped the overall architecture of Stratis, but from what I can understand, the idea is for the 

37

https://github.com/stratisproject/StratisIdentity
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts#HTLCs_in_payment_channels
https://www.youtube.com/watch?v=iGVSnxz1mn8
https://eprint.iacr.org/2016/575
https://github.com/stratisproject/StratisIdentity
https://github.com/nTumbleBit/nTumbleBit
https://stratisplatform.com/2017/09/20/breeze-wallet-with-breeze-privacy-protocol-dev-update/
https://github.com/stratisproject/StratisBitcoinFullNode
https://github.com/stratisproject/NStratis


Stratis blockchain to delegate the backend processing for each new feature, such as TumbleBit 
and Stratis Identity, to a dedicated set of masternodes. For example, the upcoming Breeze 
Node–not to be confused with the Breeze Wallet, which uses SPV instead of requiring a full 
node–will be a masternode that serves as a Tumbler. Similarly, there are plans to build 
masternodes that process Stratis Identity transactions, though I don’t really know what that 
means and can’t find any details.

Finally, it is worth mentioning that the Stratis team has planned several other features, most 
notably a way to deploy sidechains anchored to the Stratis chain. My understanding is that this 
will be the main mechanism that Stratis uses to provide customizable, private blockchains to 
clients.

Unfortunately, I haven’t been able to find any details about how sidechains on Stratis will work. 
The Stratis white paper refers to Blockstream’s sidechain paper, but that is the only hint I have 
found so far about Stratis’s design. In particular, it is not so easy to securely and trustlessly 
transfer value between two blockchains without having at least some of the miners on each 
chain validate all transactions on both chains. The details, including how the sidechain protocol 
handles forks and reorginzations, are crucial in order to evaluate how secure the mechanism is.

Even supposing that transfers between the Stratis chain and sidechains are secure, there is also 
the matter of the security of the sidechains themselves. The Stratis white paper says in several 
places that the Stratis chain will somehow provide security for its sidechains, but it doesn’t 
explain how that will work. Typically, sidechains are completely independent and must secure 
themselves.

Compared to Ardor

With Ardor, on the other hand, the parent chain does provide security for each child chain.

38

https://medium.com/@xenog/sidechains-are-not-secure-98d87dec4e3f
https://blockstream.com/sidechains.pdf
https://stratisplatform.com/files/Stratis_Whitepaper.pdf


In fact, this is one of the most important diNerences between Ardor’s parent-chain/child-chain 
architecture and typical sidechain implementations. Unfortunately, without more technical 
details from the Stratis team, it is impossible to do a proper comparison between their design 
and Ardor’s approach.

One comparison that we can do is between Stratis’s TumbleBit feature and Ardor’s Coin 
ShuNling feature. (Note that Coin ShuNling will not be available on the Ardor chain itself, but it 
will be available on Ignis, the first child chain, and other child chains can also choose to support 
it.) This feature is Nxt’s implementation of the CoinShuNle algorithm, which allows a group of 
users to trustlessly agree to transfer a fixed quantity of coins from their (input) accounts to a set 
of output accounts, one per input, without any user being able to know which of the other users 
controls each of the other output accounts. The algorithm is not very complicated, and section 
4.2 of the CoinShuNle paper gives a good overview of how it works.

I don’t claim to be an expert on either algorithm, but the TumbleBit approach seems to me to 
have a couple of advantages over CoinShuNle. Because it uses oN-blockchain payment channels,
it is potentially capable of scaling to a high transaction rate in addition to adding a measure of 
privacy to payments, addressing two problems at once. Also, if the goal is to prevent an observer
from noticing correlations between several payments–which might leak information about a 
business’s customers or supply chain, for example–it would probably be more convenient to 
make the payments back-to-back from the same account via TumbleBit instead of having to first
shuNle each payment to a new account.

On the subject of identity verification, I think the Stratis Identity module is an interesting proof 
of concept, but in my opinion Ardor provides a much richer set of tools for identity-related 
services. While a service like Stratis Identity can be built relatively easily on any blockchain, 
Ardor oNers a couple of unique features that could extend such a service for some interesting 
applications.

On Ardor, identity validators will be able to attest to the identities of account owners 
using Account Properties. These are arbitrary bits of data that can be permanently associated 
with an account on the blockchain, rather like attestations in Stratis Identity. One novel feature 
that Ardor will add, though, is the ability to issue assets that can only be traded by accounts that 
have a specific property set.

In cases where government regulations require that asset issuers know who is purchasing their 
assets, this feature will allow issuers to restrict trading of their assets to accounts whose owners’
identities have been verified by compliant identity providers. This level of control will hopefully 
help put blockchain-based securities on a firmer legal foundation, and will make it easier for 
asset issuers to comply with the law.

Even apart from regulatory compliance, asset issuers will probably find other uses for this 
feature. For example, a club or other private organization could express eligibility requirements 
for membership as a set of required account properties, issue an asset that only eligible 
accounts could obtain, and then use the asset to pay dividends to or conduct polls of members.

39

https://nxtwiki.org/wiki/Account_Properties
https://crypsys.mmci.uni-saarland.de/projects/CoinShuffle/coinshuffle.pdf
https://nxtplatform.org/what-is-nxt/coin-shuffling
https://nxtplatform.org/what-is-nxt/coin-shuffling
https://www.jelurida.com/child-chains-and-side-chains


Some Thoughts on Marketing

Even having read this far, you might still be wondering what exactly the Stratis platform is and 
how it works. To be frank, I have found myself asking these questions too, even aEer many hours
of reading about Stratis. At the risk of speaking perhaps a bit too close to the edge of my 
knowledge, I think it might be helpful to compare and contrast the marketing eNorts of Jelurida 
and the Stratis Group in order to shed some light on why it is hard for me to answer these very 
basic questions.

Reading the Stratis website and the white paper (linked above), I got the distinct impression 
that, to be blunt, those resources weren’t really written for me. The language they use reminds 
me of how the salespeople at my company talk, and I learned a while ago that engineers and 
salespeople tend not to understand each other very well.

I read that Stratis oNers “simple and aNordable end-to-end solutions” to “streamline and 
accelerate [my] blockchain project development”; that it is a “powerful and flexible blockchain 
development platform designed for the needs of real-world financial services businesses and 
other organizations that want to develop, test and deploy applications on the blockchain”; and 
that its “one-click process means that new chains can be launched with unprecedented speed, 
tailored for the needs of the organization”; but I still don’t really understand what any of this 
means, much less how Stratis will accomplish these things.

This type of language conveys precisely zero information to me. Without technical details, I am 
completely, hopelessly lost. I know that there are plenty of people who are fluent in business-
speak, though, and those people can probably read the Stratis white paper and come away with 
a decent, if very high-level, understanding of what the company plans to do. In contrast, it took 
me multiple passes through the white paper before I began to grasp the big picture, and I’m still 
not sure I have it right.

40

https://stratisplatform.com/


The Ardor white paper, on the other hand, contains substantial technical detail about how Ardor
works and what distinguishes it from other blockchain platforms. It is obvious, both from its 
content and how that content is organized, that engineers played a significant role in writing it. 
Upon completing my first pass through it, I understood pretty well what problems Ardor solves 
and how it solves them.

The point I’m trying to make with this comparison is that business-minded people and 
technically-minded people oEen speak diNerent languages, and the marketing materials that 
the Stratis Group and Jelurida have created seem to reflect this diNerence. Personally, I found it 
extremely frustrating to find so little technical substance in Stratis’s resources, and this 
frustration has probably prevented me from really understanding Stratis.

Conclusion
Is my assessment of Stratis too harsh? Maybe. I do think that TumbleBit is an interesting piece of
technology, and it seems smart for the Breeze Wallet to implement it for both Stratis and 
Bitcoin. Moreover, if we drop the white paper’s contention that the Stratis chain will secure its 
sidechains, and instead assume that sidechains will be responsible for their own security, then I 
can use my imagination to fill in enough of the gaps to come up with at least a rough mental 
image of what Stratis will look like when it is complete.

This mental image, though, is basically a direct competitor to Lisk. Sure, Stratis is based on .NET 
and the Bitcoin protocol instead of JavaScript and Lisk’s predefined transaction types, and the 
feature sets that the two teams intend to oNer don’t overlap perfectly, but essentially both 
projects aim to provide a central, public blockchain and a set of tools for easily creating 
sidechains on it. Both projects are in rather early stages of development, too, and for this reason 
it can be diNicult to find technical details about them.

Ardor is quite diNerent. Built on the Nxt codebase, it is already far more mature than Stratis, 
despite not having launched on its mainnet yet. Its parent-chain/child-chain architecture 
achieves the goal described in the Stratis white paper–a means for businesses to create 
customizable blockchains without having to worry about securing them–better than existing 
sidechain architectures. And the rich variety of features that Ardor already supports will take 
quite some time for Stratis to emulate.

Perhaps just as importantly, Jelurida and the Nxt community have done a great job of making 
technical information about Ardor and Nxt publicly available. This information lends credibility 
to the Ardor project and strengthens the community. In my opinion, it is what separates true 
marketing from hype.

41

https://www.nxter.org/ardor-vs-competition-pt-1-lisk/
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf


 Komodo / SuperNET

Ardor vs The Competition Pt 6

This week I studied Komodo, the blockchain platform that forms the basis of SuperNET.

SuperNET
Like Waves, SuperNET was founded by someone who was quite active in the Nxt community in 
the past. And as with my article about Waves, I won’t attempt to rehash that history here.

SuNice it to say that James/jl777 was the developer behind SuperNET, the Multigateway, and 
several other projects on Nxt, including a number of assets on the Nxt Asset Exchange, but he 
leE the Nxt community during the turbulent period of late 2015 and early 2016. Since then, he 
has created the Komodo platform, which now serves as the foundation of SuperNET.

The vision of SuperNET is to enable users to seamlessly transact with many diNerent 
cryptocurrencies in order to enjoy the unique advantages of each coin. The experience is to be 
so seamless, in fact, that the user might not even realize that he or she is using multiple coins. 
For example, if I understand correctly, a SuperNET application might allow users to transact 
privately with Bitcoin by converting to and from a privacy coin like Komodo behind the scenes. 
From a user’s perspective, it would be as if Bitcoin had “borrowed” Komodo’s privacy feature.

42



SuperNET isn’t itself a blockchain. Rather, it is a framework comprising several parts. The main 
ones are:

1.Komodo, a blockchain anchored to Bitcoin;

2.assetchains and geckochains, independent blockchains anchored to Komodo;
3.the Agama wallet, a multicoin wallet;
4.BarterDEX, a decentralized exchange (DEX) that will be integrated into the Agama wallet;
and,

5.Iguana, the codebase that underlies the Agama wallet and part of Komodo.

Note that much of the literature about SuperNET refers to the Agama wallet as the “Iguana 
wallet,” which was its previous name.

The “anchoring” process in items 1 and 2 is Komodo’s delayed proof-of-work consensus 
algorithm, which I describe next. I’ll return to BarterDEX later.

Delayed Proof of Work
Komodo is a fork of zCash, which is a blockchain that uses zero-knowledge proofs (via zk-
SNARKs) to allow users to transact without publicly revealing their account numbers or the 
amounts that they exchange. Komodo has added several features to its branch of the zCash 
codebase, including the delayed proof-of-work (dPoW) consensus algorithm and a mechanism 
for creating additional blockchains that are periodically anchored to the Komodo chain.

The dPoW white paper argues that the dPoW mechanism allows any blockchain to secure itself 
using Bitcoin’s hashpower by periodically notarizing itself to Bitcoin. In a nutshell, consensus on 
the weaker blockchain occurs in two stages: an initial consensus by normal means (e.g., PoW or 
PoS), and a second layer of consensus established periodically by a set of notary nodes, elected 
by stakeholders, that record a hash of the weaker chain’s most recent block on the Bitcoin 

43

https://supernet.org/en/technology/whitepapers/delayed-proof-of-work-dpow
https://z.cash/technology/zksnarks.html
https://z.cash/technology/zksnarks.html
https://z.cash/


blockchain. All nodes on the network agree that, in the event of a fork, they will not reorganize 
the blockchain past the last time it was notarized on Bitcoin.

In this way, the author argues, the weaker blockchain inherits some of the security of Bitcoin. 
Even an attacker with a large majority of the network’s hashpower won’t be able to modify the 
blockchain back past the most recently notarized block. Accordingly, somebody who waits for a 
transaction on the weaker chain to be notarized on Bitcoin can be confident that it won’t be 
reversed.

The white paper also proposes a mechanism to allow the network to fall back to the initial 
consensus mechanism in the event that the notary nodes become unavailable. The idea is that 
all nodes on the network are eligible to mine, but the notary nodes are assigned a lower 
diNiculty level than normal nodes. As a result, notary nodes will normally win most or all blocks, 
but if an attacker were to somehow take them oNline–by a DDoS attack, for example–normal 
nodes would be able to continue mining blocks and the blockchain would continue 
uninterrupted, except without the added security of Bitcoin. In this way, the dPoW chain is 
somewhat less centralized than it appears at first blush.

This line of reasoning does beg the question of exactly what is gained by the notarization 
mechanism, though. In particular, if an attacker can gain control of the notary nodes, he can 
prevent them from signing the Bitcoin transactions that notarize the weaker chain’s blocks, 
forcing the weaker blockchain to rely only on its initial consensus. So it appears that the extra 
security provided by the notarization process depends implicitly on an honest majority of notary
nodes.

[EDIT: AEer talking with jl777, I learned that Komodo allows a minority of notaries, 13 out of 64, 
to sign each notarizing transaction. This simultaneously reduces the Bitcoin fees that must be 
paid and makes the proposed attack harder, since an attacker would have to control a 
supermajority of notaries to defeat the notarization mechanism. My original statements were 
based oN of what he wrote in the dPoW white paper, which suggests that 33 of the 64 notaries 
must sign the notarizing transactions.]

This is basically the security model of delegated proof-of-stake (DPOS) blockchains like 
BitShares. In both dPoW and DPOS, users vote by stake for a set of “special” accounts that the 
rest of the network depends upon for its security. Both systems suNer the same weaknesses, 
too: a burden on users to keep up with the “politics” of the system to know which accounts are 
trustworthy enough to vote for, and the corresponding voter apathy that this burden produces.

All things considered, I’m not sure I see a strong case for dPoW over and above other 
alternatives. If the weaker chain’s initial consensus mechanism is strong enough to secure it, 
given its current economic value, then paying Bitcoin fees to notarize it seems like a waste of 
money. If the initial consensus is not suNicient, on the other hand, then it seems that the 
security of the chain rests entirely on the election of honest notaries. But in that case, why not 
use DPOS and take advantage of the increased transaction throughput that DPOS chains have 
achieved?

44



Setting these considerations aside, though, it is worth noting that the Komodo platform uses 
nested dPoW chains to help achieve SuperNET’s vision of interconnecting a variety of diNerent 
blockchains. Komodo’s additional chains are called “assetchains” and “geckochains”. These 
chains notarize themselves to Komodo, which in turn notarizes itself to Bitcoin. Again, the claim 
is that all chains involved inherit the level of security of Bitcoin, but as described above, a lot 
depends on each chain’s notary nodes.

Unlike assets on Nxt and Ardor, or even child chains on Ardor, Komodo’s assetchains are fully 
independent blockchains. Their only connection to the Komodo chain is the dPoW notarization 
mechanism. In this way, they are perhaps closer to the sidechains that Lisk and Stratis envision 
than they are to Ardor’s tightly-coupled child chains.

Geckochains are like assetchains but with support for smart contracts. I haven’t found many 
details about geckochains, and they don’t appear to be available yet, but the Komodo client 
does currently support assetchains via a command-line interface.

BarterDEX
SuperNET’s decentralized exchange, called BarterDEX, allows users to atomically trade coins 
across supported blockchains in a trustless way. The team has not yet integrated it into the 
Agama wallet’s user interface, but they’re working on it now, and in the meantime BarterDEX 
can be used on its own.

BarterDEX consists of three main components: a designated set of nodes for matching orders; a 
set of “liquidity provider” nodes to act as market makers; and a protocol for users to exchange 
coins from two diNerent blockchains with each other as a single, atomic operation.

The order-matching nodes serve the same role as they do in Waves: they partially centralize the 
task of matching buy and sell orders in order to provide a more responsive user experience. This 
way, traders don’t have to wait for the next blocks on the blockchains in question to know 
whether their orders have been filled or to cancel an order.

Liquidity provider (LP) nodes maintain balances of at least two supported coins and 
automatically trade them at a user-defined profit margin relative to a centralized exchange. For 
example, it is possible to set up an LP node that trades BTC and KMD on BarterDEX and also on 
Bittrex. Operators of LP nodes assume the risk associated with holding funds on a centralized 
exchange, and in return they profit from arbitrage opportunities between the two markets. 
Other BarterDEX users, for their part, get more liquidity and tighter bid-ask spreads than they 
would see otherwise, without having to store their coins on centralized exchanges.

AEer a user’s order is matched, likely to an order submitted by an LP node, BarterDEX uses an 
atomic cross-chain swap protocol to settle the trade on the two blockchains involved. 
Presumably the details vary somewhat depending on the trading pair, but conceptually the 
process is similar in each case. One blockchain is assumed to be compatible with Bitcoin, or at 

45

https://www.jelurida.com/child-chains-and-side-chains
https://supernet.org/en/resources/articles/komodo-smart-contracts-assetchains-and-geckochains


least to support the equivalent of Bitcoin’s hashed timelocked contracts (HTLCs). The other 
blockchain must support 2-of-2 multisig transactions.

Suppose Bob is trading his funds on the Bitcoin-compatible chain for Alice’s coins on the other 
chain. Alice and Bob each create a public key/private key pair and exchange public keys and 
hashes of the private keys. Alice sends Bob a 2-of-2 multisig transaction that he can spend once 
he knows both private keys, and Bob sends Alice a hashed timelocked transaction that Alice can 
spend by revealing her private key. Once she does, Bob uses it to unlock her multisig transaction
and the trade is complete.

The protocol adds a bit of complexity to protect each party in the case that the other exits the 
process early. If Alice walks away without spending the transaction that Bob sent, Bob can 
recover his funds aEer the timelock on that transaction expires by using his own private key. 
Conversely, in order to protect Alice from the same risk, the protocol requires Bob to submit an 
initial “deposit” in the form of a hashed timelocked transaction. If he walks away before paying 
Alice, she can wait for the timelock on this deposit to expire and claim it for herself.

This is admittedly only a high-level overview of the atomic swap protocol, but hopefully it gives 
you an idea of how it works. The most important part is that there is no centralized exchange to 
facilitate the trade: Alice and Bob have exchanged coins on diNerent blockchains without having
to trust each other or some intermediary. You can find more details in the BarterDEX white 
paper.

Compared to Ardor

What do we make of Komodo and SuperNET, then? This question largely hinges on whether 
Komodo’s delayed proof-of-work algorithm oNers a substantial degree of additional security to 
Komodo and its assetchains. In my view, it does not: it oNers roughly the same degree of security

46

https://supernet.org/en/technology/whitepapers/barterdex-a-practical-native-dex
https://supernet.org/en/technology/whitepapers/barterdex-a-practical-native-dex


as the delegated proof-of-stake algorithm, even if the notary blockchain is assumed to be 
perfectly immutable.

In this light, Komodo’s assetchains look a lot like the user-deployable sidechains that Lisk and 
Stratis aim to oNer. In all three projects, and in contrast to Ardor’s child chains, each assetchain 
or sidechain is responsible for its own security. Komodo seems to have a head start on both Lisk 
and Stratis in terms of functionality, though, as users can already deploy their own assetchains 
and conduct atomic swaps on some pairs.

Note that Ardor’s child chains store hashes of their blocks on the Ardor chain, rather like 
Komodo stores hashes of its blocks on Bitcoin, but there is a crucial diNerence: Ardor’s forging 
nodes validate all child chain transactions. Each child chain eNectively inherits all of the forging 
power of the Ardor chain, rendering it just as secure as Ardor and obviating the need for 
separate miners or forgers.

With regard to cross-chain atomic swaps, Ardor and Komodo are perhaps a bit more 
comparable. Ardor natively supports transactions among child chains and also between each 
child chain and the parent chain. Moreover, it supports a phased transaction type that is 
equivalent to 2-of-2 multisig, enabling the same kinds of atomic swaps with Bitcoin-compatible 
blockchains that BarterDEX uses. Ardor even adds the ability to combine multiple phasing 
conditions with Boolean AND, OR, and NOT operators, potentially allowing users to create the 
equivalent of a hashed timelocked transaction. Using BarterDEX’s approach, this feature could 
enable atomic cross-chain swaps to any blockchain that supports 2-of-2 multisig.

Conclusion
SuperNET’s vision of independent but interconnected blockchains is quite compelling, and 
between the Komodo platform, the Agama wallet, and the BarterDEX exchange, SuperNET has 
made real progress towards realizing that vision. While I am skeptical that the delayed proof-of-
work algorithm provides substantial additional security to Komodo and its assetchains, the 
ability to quickly deploy an assetchain at least puts Komodo ahead of Lisk and Stratis in the race
to build a functioning sidechain platform. Also, I see a lot of value in the ability to easily conduct 
cross-chain atomic swaps using BarterDEX.

Even so, I have to wonder whether there exists at the heart of SuperNET a fundamental tension 
between two of its goals. On the one hand, it aims to integrate the best features of many 
disparate blockchains, providing users and developers a seamless way to enjoy the unique 
advantages that each chain oNers. On the other hand, it has oNered Komodo as a single platform
to solve most problems, supporting as it does private transactions, user-provisioned sidechains, 
and, in the future, smart contracts. Success at either of these goals seems to undermine eNorts 
to achieve the other.

Ardor, for its part, also has a compelling vision, and one that is perhaps a bit more coherent: to 
support a multitude of businesses and projects on its child chains, making available to each a 
set of prepackaged features, allowing each to interact with the others, and requiring none to 

47



provide for its own security or to store forever the histories of the others. Ardor already oNers 
most of the technology required to realize this vision; what remains is for businesses, 
developers, and users to put that technology to good use.

48

https://www.nxter.org/snapshot-nxt-unsurpassable-blockchain-solutions/


 Ethereum (smart contracts)

Ardor vs The Competition Pt 7

This week I studied Ethereum, which probably needs no introduction.

For several of the projects I’ve surveyed throughout this series, it has been rather diNicult to find 
detailed, technical information. Ethereum has exactly the opposite problem: there is so much 
information available that it is diNicult to distill it into a reasonable-length article without 
oversimplifying important ideas.

For this reason, I have chosen only two aspects of Ethereum to compare to Ardor. This 
installment compares its smart contracts to Ardor’s smart transactions, and the next article will 
compare the approaches that the two platforms take to managing blockchain bloat. There are 
many more topics I would have liked to cover–its plans to move to Proof-of-Stake (Casper), its 
state-channel strategies (Raiden and Plasma), its partnerships with large companies through the
Enterprise Ethereum Alliance, and a sampling of the projects running on it, for example – but 
discussing even a couple of these topics in satisfactory depth is a daunting enough task. Besides,
the two topics I chose oNer the most interesting comparisons between the two platforms, in my 
opinion (but see the Ardor vs. Plasma post, linked above, for some thoughts on Plasma).

Without further ado, let’s talk about smart contracts.

49



Smart Contracts and “Rich Statefulness”
Ethereum’s design combines elements of Bitcoin and Nxt, and adds several novel features. Like 
Bitcoin, Ethereum uses a low-level scripting language to encode transactions, and it stores the 
contents of each block in Merkle trees whose root hashes are recorded in the block headers 
(more on this in the next article). And like Nxt, it tracks the current state of account balances and
other account-specific data directly instead of using Bitcoin’s unspent transaction output 
(UTXO) model.

The most important innovations that Ethereum adds to this mixture are twofold: the ability to 
store scripts (contracts) in so-called “contract accounts,” which transact autonomously instead 
of being controlled by a user; and the ability to persist data in an account from one transaction 
to the next. Ethereum’s scripting language is also somewhat more powerful than Bitcoin’s 
language, allowing contracts to include loops and to invoke other contracts.

Combining these ideas, it is possible to create stateful “smart contracts,” which are bits of code 
and data that live in contract accounts and act as autonomous agents, listening for input from 
users and other contracts and transacting with them according to the rules defined in their 
contract code. The “stateful” modifier in the previous sentence is crucial: because a smart 
contract can have its own internal state, it is possible for one transaction to aNect how 
subsequent transactions are processed. This is a significant departure from Bitcoin’s model, 
where transaction scripts only execute a single time and where the notion of the “state” 
available to a script is essentially limited to whether a given output is spent or unspent.

(You might have noticed that I haven’t said anything about Turing completeness. Depending on 
how pedantic you’re feeling, you could argue either side of the question of whether Ethereum’s 
scripting language is actually Turing complete. As the speaker in this excellent video explains, 
though, Turing completeness is a bit of a red herring anyway. Much more important is the fact 
that smart contracts are stateful and can transact with one another and with users in interesting 
ways.)

The potential applications of smart contracts extend far beyond setting conditions on the 
transfer of money from one account to another. Even the original white paper (which is a great 
read, by the way) proposed a handful of non-financial uses, including file storage, voting, 
distributed computing, governance of decentralized organizations, and decentralized 
marketplaces. Since then, developers have found plenty of other applications, too, such as 
decentralized messaging. And of course, the most common application of Ethereum so far, 
seemingly by an overwhelming margin, has been to conduct token sales for various projects.

Ardor’s “Smart Transactions”
If that list of applications sounds familiar, it might be because all but one of them have already 
been implemented in Nxt and Ardor as prepackaged “smart transactions.” Pioneered by Ardor’s 
predecessor, Nxt, smart transactions are bits of “blockchain 2.0” functionality that the Nxt and 

50

https://www.nxter.org/nxt-tutorials/
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.youtube.com/watch?v=cGFOKTm_8zk#t=04m32s


Ardor developers have made available as part of the protocol itself. They allow developers to 
create blockchain applications without having to write and test their own smart contracts.

In order to enable ordinary users (i.e., non-developers) to take advantage of this functionality, 
too, the oNicial Nxt and Ardor wallets include a handful of features built from smart 
transactions. These include:

• the Asset Exchange, where users can issue assets, trade them, and pay dividends to asset 
holders;

• the Monetary System, where users can issue currencies and conduct several diNerent 
types of crowdfunding campaigns;

• a messaging system, which allows users to send each other plain-text or encrypted 
messages;

• a voting system, which allows users to conduct polls by account, account balance, asset 
balance, or currency balance;

• an integrated coin shuNler, which can aNord users a degree of privacy by obscuring their 
transaction histories;

• a decentralized data store, which can record the hash of a file permanently on the 
blockchain and, optionally, record the file itself permanently in special archival nodes;

• a decentralized marketplace, where users can buy and sell goods and services peer-to-
peer;

• a new Coin Exchange (Ardor only), where users can trade child-chain coins directly for 
one another; and,

• a number of advanced features, such as phased transactions, which allow users to set 
constraints on when and how other transactions are executed, and account properites, 
which can be used to associate arbitrary data with an account.

These are not the only applications that can be built from smart transactions, of course, but they
do illustrate the breadth of what can be achieved with them. All of these features, plus a few 
more, will be available on Ignis, Ardor’s first child chain. Creators of other child chains will have 
the option to implement as many of these features as needed to suit their projects.

I’ve heard several analogies to describe smart transactions, but my favorite is that they are like 
Legos, while smart contracts are like clay: the former don’t provide the same degree of control 
over the finer details, but they are quicker and easier to use than the latter, and can still be 
combined to form some quite impressive final products.

The analogy isn’t perfect, of course. A strong argument for smart contracts is that it is possible 
for potentially all of the business logic of a decentralized application (Dapp) to be recorded 
permanently and immutably on the blockchain, for example, whereas a Dapp built from a 
combination of smart transactions likely includes some external code. In the latter case, using 
the Dapp might require some degree of trust in the developer not to change the rules in later 
versions of it.

51

https://nxtwiki.org/wiki/Account_Properties
https://nxtwiki.org/wiki/Phasing
https://nxtwiki.org/wiki/Marketplace
https://nxtwiki.org/wiki/Data_Cloud
https://nxtwiki.org/wiki/Coin_Shuffling
https://nxtwiki.org/wiki/Voting_System
https://nxtwiki.org/wiki/Arbitrary_Messages
https://nxtwiki.org/wiki/Monetary_System
https://nxtwiki.org/wiki/Asset_Exchange


Viewed from another angle, though, this comparison hints at arguably the biggest drawback of 
smart contracts: the ease with which they allow programmers to make multimillion-dollar 
mistakes that cannot be corrected.

Security Considerations

Just about all soEware that is even modestly complex contains flaws, and too oEen these flaws 
make the soEware vulnerable to exploitation by an attacker. Smart contract developers face a 
particularly diNicult task because the code they write is immutable, and as a result its 
vulnerabilities are permanent.

Unfortunately, catastrophic failures of buggy smart contracts have not been rare. The attack 
that froze $150 M worth of ether stored in multisig Parity wallets and the $30 M hack of that 
same wallet several months prior are the most recent examples to grab headlines, but they are 
not the first and almost certainly not the last. For an overview of some common vulnerabilities 
and analysis of several real attacks, including the infamous DAO hack, I strongly recommend this
excellent paper by three researchers from the University of Cagliari.

It is worth noting that the Ethereum protocol and the Ethereum Virtual Machine (EVM) were not 
responsible for any of these attacks. Ethereum’s supporters sometimes point this out, arguing 
that Ethereum itself is quite secure, and all that is needed is for developers to write better smart 
contracts. In a literal sense they’re right, of course: in all cases, Ethereum did what it was 
supposed to do, and ultimately the blame lies with smart contract developers.

But personally, I wonder whether this assessment is too quick to absolve Ethereum, and 
whether the problem might run a bit deeper than just a few buggy smart contracts. For now, 
anyway, it seems to me that Ethereum’s fundamental predicament is that it gives programmers 
tremendous power, but insuNicient tools to use that power safely.

52

https://eprint.iacr.org/2016/1007.pdf
https://eprint.iacr.org/2016/1007.pdf
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://paritytech.io/blog/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct.html
https://paritytech.io/blog/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct.html


Developers’ ambitions almost always exceed the level of complexity that they can achieve while 
keeping their code perfectly bug-free, and there will therefore be a constant temptation to make
functionality a higher priority than security (this is nearly universal in soEware development, by 
the way). Immortalizing the buggy code that they produce by storing it in the blockchain, 
Ethereum brutally and mercilessly holds them to account for their sins.

Thankfully, there are certainly ways to mitigate the risk of writing vulnerable smart contracts. 
For example, it is possible to design a smart contract that can be updated by having it delegate 
its responsibilities to a second contract, commonly called a “library contract,” at an address that
can be changed to point to a diNerent library contract later.

This approach allows developers to patch vulnerabilities, but as a consequence, it introduces 
the thorny question of who is allowed to switch to a new library contract. If it is a single third-
party account, then the design reintroduces some degree of trust between that account and 
users. On the other hand, if the developers take another approach, such as allowing a majority 
of users to vote in order to approve each new library contract, then there are potentially further 
problems to solve, such as writing a secure voting mechanism, making sure that users are 
suNiciently informed and engaged to vote, and preventing an attacker from doing significant 
damage in the time it takes to organize a vote.

Another very promising approach towards securing smart contracts is to use techniques 
of formal verification borrowed from mathematics. I do not know much about formal methods, 
so please take what I write here with a grain of salt, but I do know that it is easiest (or indeed, 
feasible at all) with simple programs whose proper functioning can be expressed as a set of 
short, simple rules. In such cases, it can be possible to prove with certainty that the program 
contains no bugs. Even straightforward techniques like looping and recursion can complicate 
the analysis significantly, though, so it is best if the program under test is as simple as possible.

Why am I droning on and on about all this? Putting these thoughts together, it would seem that 
the best way to write smart contracts might involve: 1) keeping them as short and as simple as 
possible; 2) delegating the core business logic to library contracts that can be updated if 
necessary; and 3) reusing libraries that have been thoroughly vetted, so as to keep the amount 
of new code to a minimum. If the second of these points requires that users trust the contract’s 
author to some degree, as is oEen the case, then contracts designed according to these three 
guidelines start to look a lot like Ardor’s smart transactions: bits of stable, thoroughly tested 
code that expose the most commonly needed functionality, which developers can assemble into
more complex programs.

Trade-oNs between Security and Flexibility
I am not suggesting that Ardor’s smart transactions can accomplish all of what Ethereum’s 
smart contracts can securely accomplish, nor am I even arguing that combinations of smart 
transactions can always emulate smart contracts. What I am saying, though, is that I think there 
is a natural tension between the flexibility that a platform oNers and the security of the code that
developers inevitably write for it.

53

https://github.com/pirapira/ethereum-formal-verification-overview


In this view, blockchain platforms can be located on a security-flexibility continuum. Near the 
“security” extreme is Bitcoin, whose scripting language is deliberately quite limited in order to 
prevent users from locking their coins with vulnerable scripts (though this is still possible, of 
course). Nxt and Ardor occupy a position somewhere toward the middle of the spectrum, 
limiting developers to a set of predefined transaction types but including an awful lot of 
functionality in those types.

Ethereum’s smart contracts, on the other hand, occupy the entire spectrum. It is possible to 
write extremely simple, trivially secure scripts on Ethereum, and it is also possible to write more 
complicated scripts that contain very subtle vulnerabilities. Perhaps just as importantly, it is 
diNicult for users to tell the diNerence between these cases–and unreasonable, in any event, to 
expect them to try. Using Ethereum safely necessarily means avoiding the “flexibility” end of the 
spectrum, even if it comes at the cost of introducing some extra trust between users and 
developers.

Finally, it is worth mentioning that Ardor oNers a new feature, not previously available in Nxt, 
that helps it inch towards the “flexibility” end of the continuum: the ability to combine phasing 
conditions using Boolean AND, OR, and NOT operators to achieve primitive smart-contract-like 
behavior.

Briefly, phased transactions allow users to condition an underlying transaction on some event, 
such as approval by a certain number of specific accounts (m-of-n multisig), a vote by accounts 
holding a particular asset, the expiration of some amount of time (timelock), or the revelation of 
a secret (e.g., a hashlock). On Ardor, combinations of these phasing types can encode more 
complex conditions, such as, “transaction X is valid if a majority of ABC Corp.’s asset holders 
approve of it by date Y, unless it is vetoed by a supermajority of ABC Corp.’s board members.”

It will no doubt be possible to combine phasing conditions in ways that allow for unexpected 
outcomes, possibly including theE or loss of funds. But the advantage over smart contracts in 
terms of security is still there, I would argue, since developers can focus on making sure the 
business logic of the transaction is sound, without having to worry about low-level bugs like race
conditions. And of course, the drawback of oNering less flexibility than a smart contract is still 
there, too.

54

https://consensys.github.io/smart-contract-best-practices/known_attacks/


Conclusion

With a protocol defined by a set of prepackaged smart transactions instead of a low-level 
scripting language, Ardor will probably never be able to oNer developers as wide a range of 
possibilities as Ethereum does, at least in cases where everything must be done on-chain for 
minimal trust between parties. On the other hand, writing nontrivial contracts that follow 
security best practices might well require additional trust between users and developers 
anyway. And of course, Ethereum users ultimately have to trust the authors of smart contracts 
not to have made any mistakes and to have duly scrutinized and tested their code in order to 
make sure of it.

Naturally, you might say the same thing about any soEware, including Ardor’s smart 
transactions, but there is a key diNerence: there is simply so much more code running on 
Ethereum. Nxt has been open-source since its inception, providing ample opportunity for peer 
review, and Ardor’s code, which builds on the Nxt codebase, will be opened soon. Moreover, 
each new change to the protocol has been vetted thoroughly on a public testnet before being 
oNicially released. The same ought to be true of each and every smart contract, but with so 
much code being written, it seems like there are inevitably more opportunities for bugs to slip 
through into production.

In any event, I suspect that the degree to which most successful Dapps will rely on 
immutable code is still an open question. If access to an immutable database and a handful of 
simple operations on that data are suNicient for most applications, then Ardor’s smart 
transactions seem to me to have an obvious advantage over smart contracts. If, in contrast, the 
notion that “code is law” turns out to be essential to the viability of most Dapps, with each Dapp 
requiring most of its unique code to be recorded on the blockchain in order to be truly trustless, 
then Ethereum’s approach is probably superior.

55

https://ethereumclassic.github.io/blog/2016-09-09-code-is-law/
https://consensys.github.io/smart-contract-best-practices/


I expect that there will be real-world applications that suit each platform. But I also wonder 
whether it will eventually become clear that one of the two approaches best handles a sizable 
majority of applications. Which approach will ultimately “win” is not at all clear to me, but I 
suspect that the deciding factor will be users’ judgments of the degree of trust that each case 
requires. And since the entire appeal of blockchain technology is that it allows users to transact 
with minimal trust, I’d say that outcome would be quite appropriate.

Thanks for reading! If you enjoyed this article, be sure to read the next part of the series, which 
compares the ways that Ardor and Ethereum cope with blockchain bloat.

56



 Ethereum (blockchain bloat)

Ardor vs The Competition Pt 8

This article continues the previous installment’s comparison between Ardor and 
Ethereum. This time, I explore how each platform approaches the problem of blockchain bloat. 
To my surprise, the two platforms are more similar in this regard than I had initially thought, 
though there are certainly significant diNerences, too.

Key to this comparison is an understanding of how the Ethereum blockchain is organized.

Ethereum’s Structure
Like Nxt, Ethereum tracks the current state of all accounts with each new block. And like Bitcoin,
Ethereum organizes the information in each block into a Merkle tree (actually, three of them) 
and stores its root hash in the block’s header.

How exactly does this work? The diagrams from this article help to illustrate.

57

https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/


 

The leaf nodes of a Merkle tree (i.e., those at the bottom) represent all of the actual data stored 
in it. Each node above the leaves stores a cryptographic hash of its two children. (Note that I’m 
using “node” here to refer to items in the tree, not computers on the network. Each computer on
the network stores the entire tree.)

This design has the property that if even a single leaf node changes by a single byte, the hash of 
its parent changes as well, along with the hash of its parent’s parent, and so on all the way up to 
the topmost node, called the “Merkle root.” In a sense, the Merkle root contains a digest of all of 
the information in the leaf nodes.

Simply grouping all of the leaf nodes together and hashing them all at once would produce a 
similar result, but the tree structure has a second nice property, which is that it is possible to 
prove that a single leaf is in the tree without seeing the entire tree. For example, in this diagram 
it is possible to prove that the green transaction has been included by supplying its sibling, in 
yellow, their parent, in gray, and the other siblings and parents along the path back to the root. 
Another user can compute the relevant hashes at each level in the tree, then compare the 
resulting Merkle root to the one stored in the blockchain. These “Merkle proofs” are the 
foundation of Bitcoin’s simplified payment verification (SPV) clients, and also several of 
Ethereum’s scaling proposals.

Ethereum uses three separate Merkle trees to record the data in each block: one for the block’s 
transactions; a second for a set of “receipts” for those transactions, which represent each 
transaction’s eNects; and a third for recording the instantaneous state of all accounts, including 
their balances and associated data. Storing the entire state of the system with every block 
sounds tremendously wasteful, but since each block modifies only a very small subset of leaf 
nodes, most branches of the state tree do not change from block to block, and each new state 
tree can refer to entire branches of the previous one with minimal overhead. There are a few 
technical complications with this approach, and for that reason Ethereum actually uses a 
slightly diNerent data structure called a Merkle-Patricia tree, but the concept is the same.

58



Ethereum’s Fast-Sync Nodes
The most important fact in all of this is that the properties of cryptographic hash functions 
ensure that it is practically impossible to construct two diNerent trees with the same root. As a 
result, the record of Merkle roots stored in Ethereum’s block headers is suNicient to establish 
that the network at the time validated the corresponding transactions and state transitions.

In other words, even aEer a node has “forgotten” the contents of old blocks, as long as it keeps 
the (much smaller) block headers in storage, it can query a full node for a given block’s contents 
and verify for itself that the full node has not tampered with any data. It does this simply by 
recomputing the relevant Merkle roots and comparing to the corresponding values in the block’s
header. (Note that here and for the remainder of the article, I’ve switched back to using “node” 
to refer to a peer on the network, not an item in a Merkle tree.)

This approach is exactly how the Go Ethereum (geth) wallet’s fast-sync option works. To perform
a fast-sync, a new node first downloads and verifies all block headers, starting with the genesis 
block (actually, only every 100th block header must be verified; see the GitHub link for details). 
Since the headers contain the proof-of-work, this step is suNicient to show that the network 
came to consensus about the Merkle roots in each header at the time the block was mined.

At some point in the recent past, say, 1024 blocks ago, the node gets a full version of the state 
tree from its peers and validates it against the Merkle root in the corresponding header. From 
that point forward, the node downloads full blocks from peers and replays all transactions until 
it has reached the most recent block, at which point it simply turns into an ordinary full node.

Although Go Ethereum does not currently support it, it is also possible for nodes to continuously
prune the state tree as time progresses, keeping the amount of state data that must be stored to
a minimum.

Child Chain Pruning on Ardor
If you have studied Ardor’s parent-chain/child-chain architecture, this strategy hopefully sounds
quite familiar. Ardor takes a very similar approach with regards to its child chains.

Briefly, the Ardor platform consists of a single proof-of-stake parent chain, also called Ardor, and
a set of child chains. The parent chain supports only a few transaction types, basically, just those
required for transferring ARDR around and for forging with it. The child chains, in turn, handle all
of the actual business conducted on the platform using the smart transactions I described in the 
previous article in this series.

59

https://blog.ethereum.org/2015/06/26/state-tree-pruning/
https://blog.ethereum.org/2015/06/26/state-tree-pruning/
https://github.com/ethereum/go-ethereum/pull/1889


Only the parent chain’s coin (ARDR) can be used to forge. Transactions involving only the child 
chains’ coins do not aNect the balances of the forging coin, so they are not essential to the 
security of the blockchain and do not need to be stored permanently. Special “bundler” nodes 
on each child chain collect these transactions, group them together, hash them, and report the 
hash to the network using a special transaction type called ChildChainBlock. They include the 
full transaction data along with each ChildChainBlock transaction, so forgers and other nodes 
can verify that the child-chain transactions are valid and do indeed produce the reported hash, 
but the transaction data itself is not stored in the blockchain, and aEer a specified time passes it 
can be pruned away. All that remains in the parent blockchain is the hash of this data.

Optionally, special archival nodes on each child chain can store the full history of that child 
chain’s transactions. In cases where this history is needed, nodes can retrieve it, hash the 
original bundles of transactions, and verify that the hashes match the ones recorded on the 
blockchain.

Hopefully, the comparison to geth’s fast-sync option is clear at this point: in both cases, nodes 
do not need to store the vast majority of transaction data to be able to verify that the network 
approved of those transactions at the time they were made. On Ethereum, it is suNicient to 

60



verify the proof-of-work in the block headers and the accuracy of any given Merkle root to be 
able to trust the corresponding state tree. Ardor is slightly more complicated because it uses 
proof-of-stake for consensus, but storing the full record of ARDR transactions along with 
ChildChainBlock transactions ensures that nodes can verify, starting from the genesis block, 
that each block was forged by an eligible forger.

Comparing the Two Designs

At this point, I hope you agree with me that we can draw the following parallels between 
Ethereum and Ardor:

• An Ethereum full node is similar to an Ardor node that also stores the full history of every 
child chain.

• An Ethereum fast-sync node that continuously prunes the state tree is similar to an 
ordinary Ardor node, which stores the full parent chain but prunes away all child-chain 
data.

• Ardor oNers the ability to run a node that stores the entire parent blockchain, plus the 
archived transaction data for a single child chain. This option currently has no equivalent
on Ethereum.

These analogies are not perfect, of course. Specifically, it is worth noting that Ethereum’s block 
headers are considerably smaller than full parent chain blocks on Ardor. I’ve also glossed over 
the mechanism that Ardor uses to track snapshots of the full state of the system and store 
hashes of those snapshots in the parent chain.

Still, I think this comparison is helpful. The third item in this list is especially interesting since it 
seems to be the biggest qualitative diNerence between the two designs. On Ardor, the ability to 
store each child chain’s transaction history in a separate set of archival nodes allows for a type 
of vertical partitioning of the blockchain database. Since each child chain likely supports a 

61



diNerent business or project, partitioning the total set of all transactions along the lines defined 
by child chains seems like a natural choice. On Ethereum, perhaps the best analogy would be a 
design where a user could run a full node for a single project, like Golem, without having to 
simultaneously run full nodes for Augur and BAT and hundreds of other projects.

On that note, it strikes me that Ethereum’s Merkle trees might naturally accommodate such a 
design, where a “Golem full node” would search the full blockchain for all transactions involving 
GNT, store Merkle proofs for those transactions and state transitions permanently, and discard 
the remaining data. I admit I haven’t thought through the implications of this idea, though, so I 
won’t say much more about it here.

In any event, neither this hypothetical strategy for Ethereum, nor Ardor’s parent-chain/child-
chain architecture, represents true sharding of the blockchain, since in both cases each node 
still must process all transactions from the whole network. These designs partition the storage, 
but not the bandwidth or computational power, required to run the blockchain. A proper scaling
strategy must address all three bottlenecks.

Speaking of sharding…

Sharding
Ethereum’s long-term vision for on-chain scaling is sharding, a way of partitioning both the 
storage of data and the processing of transactions. The goal is for most nodes on the network to 
have to process transactions from only a single shard, freeing them from the burden of 
validating and storing transactions that aNect only other shards.

I won’t even attempt to survey the Ethereum team’s proposals here, as this article is already 
getting long, but if you’re interested in this topic I strongly recommend their fantastic sharding 
FAQ on GitHub.

The reason I bring up sharding, though, is that Ardor’s developers have suggested that they are 
exploring ways to push child-chain transaction processing to dedicated subnets of the Ardor 
network. They have not oNered technical details yet, and I’ll refrain from speculating here about 
how it might work, but to me, the idea certainly seems plausible.

If the devs can deliver on this idea, then the Ardor platform will look a lot like the “basic design 
of a sharded blockchain” described in the Ethereum team’s document. That section of the paper
describes a set of “collator” (bundler) nodes charged with collecting (bundling) transactions 
from a single shard (child chain), validating them, and recording their hash in a “collation 
header” (ChildChainBlock transaction) on the main (parent) blockchain. “Super-full nodes” 
(current parent-chain nodes) would process all transactions from all shards; “top-level nodes” 
(future parent-chain nodes) would process only the main chain blocks, but not the full contents 
of all collations; and “single-shard nodes” (future child-chain nodes) would process all 
transactions on the main chain and a single shard.

62

https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ


Almost all of the complications arise from cross-shard communication, and as a result, this 
design works best when the shards are largely independent. As I mentioned above, Ardor’s child 
chains might naturally accomplish this kind of partitioning, with each chain supporting a 
separate project, where interactions between projects are allowed but still less common than 
transactions within a project.

Conclusion

At this early stage, these ideas are quite tentative, of course. But the possibilities are exciting 
nonetheless. Ardor’s design already incorporates proof-of-stake consensus, a separate goal that 
the Ethereum team has set for itself, and a reasonable partitioning of the blockchain’s data, 
which is an obvious requirement for any sharded solution. Notably absent in Ardor are Merkle 
proofs, or some other compact way for partitions to trustlessly communicate state information 
to one another, but it does seem like these features could be built into the platform via a hard 
fork. The snapshot hashes and child-chain block hashes that would become Merkle roots are 
already present in the protocol, aEer all.

But what can we say about the current state of the two projects? Perhaps the most interesting 
fact I learned in researching and writing this article is that Ethereum actually scales far better 
than I had originally thought. Go Ethereum’s fast-sync option for full nodes aNords some of the 
same advantages of Ardor’s design, and if it eventually incorporates state-tree pruning the 
analogy will be even closer.

On the other hand, the main drawback of Ethereum’s current design is that there must still be 
full nodes somewhere on the network, and those nodes must store all 300+ GB of the Ethereum 
blockchain. As it continues to grow, and the cost of running a full node grows along with it, one 
would expect the proportion of full nodes relative to fast-sync and light nodes to naturally 
decline. As a consequence, each full node will likely end up handling an increasing volume of 

63

http://bc.daniel.net.nz/


requests from other nodes, further increasing the cost (in terms of bandwidth and 
computational power) of running a full node.

Even without sharding, Ardor’s design mitigates this potential problem by breaking Ethereum’s 
monolithic full nodes into sets of archival nodes that each store the current state of only one 
child chain. It will be possible to store the histories of several child chains simultaneously, if 
desired, but few nodes, or potentially none at all, will be required to store the full history of the 
entire system.
Needless to say, scaling a blockchain is a hard problem. Out of the several projects that I have 
surveyed for this series, Ardor and Ethereum seem to me to oNer the most compelling visions for
on-chain scaling. And while I am hopeful that both will succeed, I must admit that, judging solely
from the concrete progress that each project has already made towards achieving its vision, 
Ardor seems to me to have an ever-so-slight head start.

64



 Closing Remarks

Ardor vs The Competition

This is the final installment of a series of articles that compares Ardor to other blockchain
projects with similar features or goals. You can find the rest of the series here, and feel free to 
leave comments and critique:

•Ardor vs. Plasma
•Ardor vs. the Competition, Pt. 1: Lisk
•Ardor vs. the Competition, Pt. 2: NEM/Mijin/Catapult
•Ardor vs. the Competition, Pt. 3: IOTA
•Ardor vs. the Competition, Pt. 4: Waves
•Ardor vs. the Competition, Pt. 5: Stratis
•Ardor vs. the Competition, Pt. 6: Komodo/SuperNET
•Ardor vs. the Competition, Pt. 7: Ethereum (Smart Contracts)
•Ardor vs. the Competition, Pt. 8: Ethereum (Blockchain Bloat)

This series started with a brief, informal reddit post with my initial reactions to the Plasma 
paper. I didn’t know at the time that it would launch me on a tour of half a dozen other 
cryptocurrency projects, ranging from sidechain platforms (Lisk, Stratis, arguably Komodo) to 
colored-coins platforms with unique features (NEM, Waves), to a project that eschews the 
blockchain altogether in favor of a completely diNerent data structure (IOTA). Now that we have 

65

https://www.nxter.org/ardor-vs-competition-pt-8-ethereum-blockchain-bloat/
https://www.nxter.org/ardor-vs-competition-pt-7-ethereum-smart-contracts/
https://www.nxter.org/ardor-vs-competition-pt-6-komodosupernet/
https://www.nxter.org/ardor-vs-the-competition-stratis/
https://www.nxter.org/ardor-vs-competition-pt-4-waves/
https://www.nxter.org/ardor-vs-competition-pt-3-iota/
https://www.nxter.org/ardor-vs-competition-nem-mijin-catapult/
https://www.nxter.org/ardor-vs-competition-pt-1-lisk/
https://www.reddit.com/r/Ardor/comments/6v8yao/ardor_vs_plasma/


come full-circle, with the last two articles focusing once again on Ethereum, I think we have 
reached a good place to conclude.

This series has covered a lot of ground, and I won’t attempt to summarize everything here. 
Instead, I would like to share my thoughts on an overarching theme that emerged from my 
research on these projects.

Scaling Securely
As I’ve mentioned before, my primary interest throughout this series has been to survey various 
approaches to the diNicult problem of scaling a blockchain. What I’ve learned is that there are 
many diNerent strategies, but most involve a trade-oN with security. I am certainly not the first 
one to make this observation, but I think it bears repeating here in the context of this series.

At one end of the spectrum, the most secure way to launch a new blockchain project is probably 
to issue a token on an existing blockchain that has already secured itself. This is the colored-
coins approach that Nxt, NEM, Waves, and Ethereum use, for example. Transactions involving 
these tokens are recorded directly on the underlying blockchain and are therefore just as secure 
as any other transactions on it.

The obvious drawback of this approach is that it doesn’t scale particularly well: every node on 
the network must process all transactions involving all tokens on the blockchain, even if the 
projects that those tokens represent have nothing to do with one another. Moreover, all of this 
transaction data is stored forever on the same blockchain, bloating it at a rate proportional to 
the combined transaction volume of all of the projects running on it.

So-called “vertical” scaling methods, which aim to allow each node to do the same amount of 
work faster, or store the same amount of data more eNiciently, are the natural way to scale this 
strategy. NEM’s Catapult project is a good example, as it focuses on optimizing the full client’s 
code and the communication protocol used on the network. Waves NG, an optimization of the 
forging protocol, is another example.

This approach to scaling ultimately runs into limits, though. At some point, adding enough users
and transactions will break these designs, and the only viable option is some form of 
“horizontal” scaling, where each node on the network processes and stores only a subset of all 
transactions.

One reasonable way to scale a blockchain platform horizontally is to push each project onto its 
own independent blockchain, which is the approach that sidechain platforms like Lisk and 
Stratis are taking. This approach occupies the other end of the security-scalability spectrum: it 
naturally partitions both the total computational work and storage required to run the platform 
and allows diNerent nodes to handle each partition, but this scaling comes at the cost of 
decreased security. Specifically, with N projects running on a sidechain platform, the weakest 
sidechain is secured by at most 1/N of the total miners or forgers, and likely far fewer than that, 
especially in its infancy.

66

https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ


Ardor partially transcends the security-scalability spectrum, successfully partitioning the 
storage of child chain data without sacrificing security. The price of this benefit is that the entire 
network must still process each transaction. It will be interesting to see the details of Jelurida's 
plan to push child chain transaction processing onto dedicated subnets of the network, which 
would provide the missing computational and bandwidth scaling, but until then, we must 
refrain from speculating.

IOTA is a bit of a special case, as its design is fundamentally diNerent from a blockchain in a 
couple of important ways. Without rehashing the whole mechanism of “eventual consensus” on 
the tangle, allow me to say that IOTA’s tangle (as it is implemented today) seems to me to be 
primarily a form of vertical scaling, with an element of horizontal scaling. Each node sees and 
stores every transaction, and although nodes can continuously prune the tangle over time, 
reducing the storage requirement, “permanodes” on the network must still store the entire 
history of the tangle in order to bootstrap new nodes trustlessly. On the other hand, nodes do 
not necessarily need to validate each transaction, as they can accept transactions that are 
suNiciently deep in the tangle as having been confirmed by other nodes on the network as long 
as they are referenced by all tips.

In other words, IOTA partitions the computational work required to validate transactions, but 
not the bandwidth required to relay them or the data that must be stored.

Eventually, IOTA plans to introduce “swarm” nodes to divide up the work of transaction 
validation and tangle storage. This will be a form of full horizontal partitioning, but I have not yet
been able to find technical details, so in my opinion, it belongs in the same category as 
Ethereum’s Plasma and sharding proposals: a plausible-sounding idea that needs further 
development before it can be accepted as a real solution.

On that note, I’d like to make one final point about Ardor’s approach towards scaling: while it is 
not a panacea, at least at this early stage, it is important not to understate the value of an 
architecture that exists and actually works. Perhaps it goes without saying, but Ardor’s 
developers are not just hypothesizing about theoretical solutions to a diNicult problem. They 
have proven that they can devise an ambitious but realistic design, implement it in a reasonable 
time frame, and in doing so make substantial, concrete progress towards a truly scalable 
blockchain. Not every team can make those claims, no matter how promising their initial ideas 
sound.

Final Thoughts
There is plenty more to be said about all of these projects, but this will have to suNice for now. I 
hope you’ve enjoyed reading these articles even half as much as I’ve enjoyed writing them. On a 
personal note, I would like to thank you for reading this far, and for sharing these articles with 
other blockchain enthusiasts. It has been immensely rewarding to see people oNer their 
support, comments, critiques, and all manner of other reactions. I am humbled and deeply 
grateful that you took the time to engage with my work.

67



If I may leave you with a parting thought, it is this: aEer all is said and done, I see tremendous 
potential in several of these projects, but I am especially excited about Ardor. Its parent-
chain/child-chain architecture simultaneously addresses two very important problems: how to 
cope with bloat, and how to oNer a blockchain as a service to clients who do not have the 
resources or expertise to start their own blockchains. It is anybody’s guess what economic value 
markets will ultimately assign to Ardor’s solutions to these problems, but in my humble opinion,
Ardor compares quite favorably to the competition on both points. I can’t wait to see what the 
future holds.

68



 Resources

Jelurida
https://jelurida.com

Whitepaper
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf

NXTER.ORG
http://nxter.org

Ardor
https://ardorplatform.org

Nxtwiki
https://nxtwiki.org

NxtPlatform
https://nxtplatform.org

Source code
https://bitbucket.org/Jelurida/ardor/src

69

https://bitbucket.org/Jelurida/ardor/src
https://nxtplatform.org/
https://nxtwiki.org/
https://ardorplatform.org/
https://jelurida.com/
http://nxter.org/
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf

	TABLE OF CONTENTS
	Preface
	LISK
	Ardor vs The Competition Pt 1
	Lisk
	Compared to Ardor
	Conclusion
	NEM/Mijin/Catapult
	Ardor vs The Competition Pt 2
	NEM
	Mijin
	Catapult
	Compared to Ardor (1)
	Conclusion (1)
	IOTA
	Ardor vs The Competition Pt 3
	Why Compare Ardor and IOTA?
	The Tangle
	Consensus
	Security
	Scalability

	Compared to Ardor (2)
	Final Thoughts

	Waves
	Ardor vs The Competition Pt 4
	Waves (1)
	Unique Features

	Comparison with Ardor
	Conclusion (2)
	Stratis
	Ardor vs The Competition Pt 5
	Stratis (1)
	Compared to Ardor (3)
	Some Thoughts on Marketing

	Conclusion (3)
	Komodo / SuperNET
	Ardor vs The Competition Pt 6
	SuperNET
	Delayed Proof of Work
	BarterDEX
	Conclusion (4)
	Ethereum (smart contracts)
	Ardor vs The Competition Pt 7
	Smart Contracts and “Rich Statefulness”
	Ardor’s “Smart Transactions”
	Security Considerations
	Trade-offs between Security and Flexibility
	Conclusion (5)
	Ethereum (blockchain bloat)
	Ardor vs The Competition Pt 8
	Ethereum’s Fast-Sync Nodes
	Child Chain Pruning on Ardor
	Comparing the Two Designs
	Sharding
	Conclusion (6)
	Closing Remarks
	Ardor vs The Competition
	Scaling Securely
	Final Thoughts
	Resources

