
UNIVERSITY OF TARTU

Institute of Computer Science
Software Engineering Curriculum

Andreas Ellervee

A Reference Model for Blockchain-Based
Distributed Ledger Technology

Masters’s Thesis (30 ECTS)

Supervisor: Raimundas Matulevičius, PhD

Supervisor: Nicolas Mayer, PhD

Tartu 2017

A Reference Model for the Blockchain-Based Distributed Ledger
Technology

Abstract:

Blockchain is a distributed, transactional database that is shared across all the
nodes participating in the network. This is the main technical innovation of Bit-
coin and it acts as a public ledger for the transactions. Every node in the system
has a full copy of the current chain, which contains every transaction ever executed.
Every block contains a hash of the previous block, linking these two together. The
linked blocks become a blockchain. However, this technology lacks standardisation
and uniform understanding. This is due to a few studies, that would provide a
comprehensive model of the blockchain and the distributed ledger technology. In
this thesis we compare four blockchain technology platforms and focus on their
business level properties including actors and roles, services, processes and data
model. Our comparison results in a reference model, which could potentially guide
the business and system analysts and software developers when developing new
blockchain platforms or their supported implementations. Accuracy of the pro-
posed reference model is validated by considering it against selected blockchain
platforms. The reference model is also validated via application, showing its use-
fulness for a risk-related blockchain security assessment.

Keywords: Blockchain technology, Reference model, Distributed ledger,
Bitcoin, Etherum

CERCS: T120 - Systems engineering, computer technology

2

Standardmudel Plokiahelal Põhinevale Hajusale
Raamatupidamistehnoloogiale

Lühikokkuvõte:

Plokiahel on hajus, transaktsioonidel põhinev andmebaas, mis on jagatud kõigi
kasutajate vahel. See on Bitcoin’i põhiline tehnoloogiline innovatsioon ning ploki-
ahela roll on olla hajus pearaamat kõikidele transaktsioonidele. Igal kasutajal
(sõlm, ingl.k. ’node’) on terve koopia kõige hilisemast ahelast, mis hoiab endas
igat transaktsiooni, mis kunagi tehtud. Iga plokk sisaldab endas eelmise ploki
räsiväärtust (ingl.k. ’hash’), mis seob kaks plokki omavahel. Ühendatud plokid
moodustavadki plokiahela. Paraku sellisel tehnoloogial puudub standard ja ühtne
arusaam. Selle põhjuseks on vähesed akadeemilised uurimustööd, mis käsitleksid
seda tehnoloogiat ja kirjeldaksid standardiseeritud mudelit. Käesoleva lõputöö
eesmärgiks on võrrelda nelja plokiahela tehnoloogiat ning keskenduda nende äri-
taseme atribuutidele - tehnoloogias osalejad ja nende rollid, teenused, äriprotses-
sid ja andmemudelid. Analüüsi ja võrdluse tulemusena valmib standardiseeritud
mudel, mis võib potentsiaalselt abistada analüütikuid ja arendajaid plokiahela
tehnoloogiaga töötamisel. Loodud mudeli täpsuse valideerimiseks võrreldakse seda
erinevate plokiahela tehnoloogiatega. Lisaks, valideerime standardmudelit kasu-
tades seda riskipõhise analüüsi teostamisel.

Märksõnad: Plokiahela tehnoloogia, standardmudel, hajus raamatupidamine,
Bitcoin, Etherum

CERCS: T120 - Süsteemitehnoloogia, arvutitehnoloogia

3

Contents
1 Introduction 6

1.1 Research Questions . 6
1.2 Research Method . 7

2 State Of The Art 9
2.1 Background . 9
2.2 Research Protocol . 10

2.2.1 Considered Properties . 10
2.2.2 Selected Blockchain Platforms 10
2.2.3 Scope . 11
2.2.4 Limitations . 11

2.3 Bitcoin . 11
2.3.1 Introduction to Bitcoin . 11
2.3.2 Business Layer . 12

2.4 MultiChain . 18
2.4.1 Introduction to MultiChain 18
2.4.2 Business Layer . 18

2.5 Ethereum . 22
2.5.1 Introduction to Ethereum 22
2.5.2 Business Layer . 23

2.6 Chain Core (Chain Protocol) . 28
2.6.1 Introduction to Chain Core 28
2.6.2 Business Layer . 28

2.7 Answers to Research Questions . 32

3 Contribution 33
3.1 Technology Comparison . 33

3.1.1 Actors . 33
3.1.2 Services . 34
3.1.3 Processes . 35
3.1.4 Data Models . 40

3.2 Reference Model . 40
3.2.1 Actors . 42
3.2.2 Services . 42
3.2.3 Processes . 43
3.2.4 Data model . 45

3.3 Answers to Research Questions . 46

4

4 Accuracy Validation 47
4.1 Platforms Used to Construct the Reference Model 47

4.1.1 Delta Definition . 47
4.1.2 Delta Boundaries . 48
4.1.3 Bitcoin . 48
4.1.4 MultiChain . 49
4.1.5 Ethereum . 50
4.1.6 Chain Core . 50

4.2 Platforms Not Used to Construct the Reference Model 51
4.2.1 Validation Method . 52
4.2.2 Cryptonote . 52
4.2.3 NXT . 54
4.2.4 Hyperledger Fabric . 55
4.2.5 Tendermint . 57

4.3 Results . 58
4.4 Answers to Research Questions . 59

5 Security Assessment 61
5.1 Security Risks . 61
5.2 Security Risks in ISSRM-Aligned ArchiMate 62

5.2.1 DNS Seeds man-in-the-middle-attack 63
5.2.2 Sybil attack . 64
5.2.3 Selfish mining (51% attack) 65

5.3 Security Risks in Security Risk-Oriented BPMN 66
5.3.1 DNS Seeds Man-in-the-middle Attack 66
5.3.2 Other Security Risks . 68

5.4 Discussion . 70
5.5 Answers to Research Questions . 70

6 Concluding Remarks 71
6.1 Limitations . 71
6.2 Answers to Research Questions . 71
6.3 Conclusion . 72
6.4 Future Work . 73

5

1 Introduction
The blockchain technology was introduced in 2008 and the first implementation,
i.e. Bitcoin, was introduced a year later, in 2009, published in the paper “Bitcoin:
A Peer-to-Peer Electronic Cash System” under the alias Satoshi Nakamoto [21].
Since Bitcoin’s release, the popularity of the cryptocurrency has only kept growing,
because customers have started value the convenience and security of digital cur-
rencies1, enabled by the blockchain technology. In the traditional banking systems,
the ledger is a centralised party (e.g., the bank), which stores all the transactions.
Blockchain, which serves as the decentralized public ledger for bitcoin, can also be
applied to other fields, such as healthcare, insurance, data verification and others.

Different businesses have developed various implementations using the block-
chains, however, this technology lacks standardization [23]. Only limited analysis
[11] exists on the conceptual explanation and understanding of the blockchain
technology.

This thesis is focused on unifying this understanding and proposes a com-
prehensive reference model to characterise the blockchain technology. The main
research question is “How to unify the understanding of the technology, through
a reference model?”. Our proposed model will be developed by investigating and
comparing existing blockchain implementations. Being presented in ArchiMate,
BPMN and UML modelling languages, the proposed reference model could po-
tentially guide business analysts, system analysts and software developers when
engineering applications using blockchain technology, developing new blockchain
technology platforms, analysing and comparing existing blockchain solutions.

1.1 Research Questions

The main research question (MRQ) is:

MRQ - How to unify the understanding of the technology, through a
comprehensive reference model? This question is broken down into several
sub-research-questions (SRQ):

SRQ1 - What is the current state of the blockchain technology and
how to model the representations? We will investigate different blockchain
technologies and decide which properties we will consider for analysis. Information
will be gathered and modeled using known modeling notations.

1http://www.newsbtc.com/2016/02/27/bitcoin-continues-become-increasingly-popular/

6

SRQ2 - How to build the reference model? We will use the information
gathered in SRQ1 and analyze the similarities and differences between the tech-
nologies. Based on that analysis we are going to build the reference model.

SRQ3 - What are the means of validating the model? We will focus
on validating the model’s accuracy by comparing it to a selection of blockchain
technologies. Additionally, we will use the model and the research to see if it is
possible to do a security assessment on the technology.

1.2 Research Method

The following research method is applied to provide a sufficient and detailed
answer to the main research question (see MRQ in Section 1.1):

1. State of the art - Discover and research the existing technologies and rep-
resent them using known modeling languages. For a top-level presentation
of the technology, from an enterprise viewpoint, we have chosen ArchiMate2
modeling language, which allows us to capture different layers of the tech-
nology and see what are the relationships between the entities. ArchiMate
language also supports process and domain models, but because they can
not be modeled in detail, we will use BPMN3 to capture the processes and
UML4 to present the domain with class diagrams. Figure 1 presents a map
that show our approach to modeling the technology.

2. The current solutions with their representations are analysed and compared
to see what are the differences and similarities between the technologies.

3. Conceive a reference model, that would present the domain of the blockchain
technology. Show how the reference model covers different use-cases (per-
missioned and unpermissioned, transactions only and with smart-contracts).

4. Accuracy Validation - Compare the reference model to the four blockchain
technologies, that were used as the basis for building the model, and conceive
a Delta (∆) metric that would represent the difference between the reference
model and the original implementation. Then choose another four blockchain
technologies, compare and conceive the Delta (∆). Compare the Deltas to
see how well the reference model performs compared to existing blockchain
technologies.

2http://www.opengroup.org/subjectareas/enterprise/archimate-overview
3Business Process Model and Notation - http://www.bpmn.org/
4Unified Modeling Language - http://www.uml.org/

7

Figure 1: Map showing our approach to modeling the technology

5. Validation through application (Security assessment supported by the refer-
ence model) - We will research a set of known risks and vulnerabilities and
present them using ISSRM5. Then link the risks and the reference model by
ISSRM alignment with ArchiMate and BPMN. The goal is to provide a secu-
rity assessment, supported by the model, to see which actors and components
are affected by the attack.

Chapter 2 presents the research protocol and gives a state of the art overview.
This is followed by the analysis of the selected blockchain technologies. Chapter
3 describes the contribution - comparison of the technologies and conceiving the
reference model. Chapter 4 and 5 present our approaches to validating the model
- firstly validating the accuracy of the model by considering actors, services, pro-
cesses and data of the existing blockchain platforms; secondly validating the model
via application by applying it to risk-related security assessment of the blockchain
technology. Finally, chapter 6 gives the concluding remarks and presents future
work.

5Information Systems Security Risk Management

8

2 State Of The Art
This chapter introduces the state of the art for blockchain technology and pro-

vides an answer to “What is the current state of the blockchain technology and
how to model the representations?” (SRQ1 in Section 1.1). To better answer
this question, we break it down into three sub-questions: 1) What are the con-
sidered properties that we are looking for in the blockchain technology? 2) What
blockchain technology implementations to select? 3) What modeling languages
to use to model the representations? We will begin by explaining the blockchain
technology in more detail. Research protocol is presented to show what informa-
tion is expected from different implementations and which implementations were
selected and how they are different from each other. After this, each implementa-
tion is looked at in more detail and for each, a conceptual representation model is
provided.

2.1 Background

In the traditional banking systems, the ledger is a centralized party (the bank)
which stores all the transactions. This means that all of the trust is put into that
one party and there is no-one to verify that the central party can be trusted.

Blockchain acts as the distributed public ledger. It is a digital record of trans-
actions and ownership, that is replicated among all of the participants of the peer-
to-peer network and a consensus algorithm ensures that each node a the same
copy of the ledger as the other nodes. Technically, it is a back-linked ordered list
of blocks, where each block contains transactions [5]. Each time a transaction is
made, it is broadcasted to the network and if it is valid, it will be added to a
block. When a new block is published to the network, all participants (nodes) in
the network will run algorithm to evaluate and verify the block. Majority of the
nodes have to agree that the new block is valid and if so, it will be part of the
main blockchain. Once a block of data is recorded on the blockchain ledger, data
becomes more secure as the blockchain grows [22].

There are two main types of blockchains. Bitcoin has a public ledger, i.e. public
blockchain, where anyone is allowed to read and write [24]. There is no need for a
third authority to grant any permissions. On the other hand, a private blockchain is
a network where all the participants are known and trusted [10] and the consensus
process is managed by pre-selected set of participants [6].

The first generation of blockchain was all about cryptocurrency and its ex-
change possibilities. The 2.0 generation is about contracts. Bitcoin introduced a
very basic, Turing-incomplete scripting language, that allowed some form of con-
tractual complexity, but Ethereum came out with a full Turing-complete scripting
language and a new blockchain, that focuses heavily on the use of smart contracts.

9

The third generation of blockchain is believed to support applications beyond cur-
rency and finance in different areas of government, health, science and culture.

2.2 Research Protocol

Research protocol presents which properties of the technology we consider for
our research, which implementations of the technologies were selected and what
are the limitations regarding our research.

2.2.1 Considered Properties

This research is done from a business perspective and thus we are considering
the following properties:

• Platforms - we are considering implementations of the blockchain technol-
ogy that introduce different approaches to privacy and smart contracts.

• Actors - we want to know who the actors are and what roles they play in
the given blockchain technology.

• Services - what services are provided by the blockchain platform? Who
interacts with the services?

• Processes - what are the underlying processes to services? How do network,
transaction and mining/consensus processes work?

• Data models - what are the entities that hold information? What are the
relationships between them?

2.2.2 Selected Blockchain Platforms

Blockchain technology platforms can be separated into four groups [3] [17] as
illustrated in Table 1. For our study we have selected one blockchain platform of
each group. They can be characterised as follows:

Table 1: Overview of chosen blockchain technologies

Permissionless Permissioned
With Smart Contracts Ethereum Chain Core
Transactions only Bitcoin MultiChain

• Permissionless - Fully public blockchains, where anyone can read and write.
• Permissioned blockchain allows to define different permissions on differ-

ent users on the network. There can be different permissions for different
operations on the blockchain.

10

• Blockchains with Smart Contracts enable “smart contract" like capabil-
ities and allow building business logic and business process mechanism into
the chain.

• Blockchains with transactions only are built for transaction capabilities.
They support transferring value from one account to another.

2.2.3 Scope

Our scope includes the selected platforms and we will be modeling them based
on the considered properties mentioned in the previous sub-sections. ArchiMate
modeling language supports three layers (Business, Application and Infrastructure
layer), but we will only focus on the Business layer. The business processes in the
Business layer are expanded with BPMN and the data objects are expanded by
UML, to provide a more detailed overview.

2.2.4 Limitations

Even though the technology has been around for a while now, there are limita-
tions when it comes to the literature in hand. As mentioned in the introduction,
there are very few academic studies available regarding blockchain and its repre-
sentation. Most of the available non-academic papers about blockchain technology
are whitepapers, documentations or technical documents; some of which are still
being updated and may be incomplete [14] [2]. Due to this, some information
is missing or incomplete, so the following review of the technologies is based on
the literature available to the author (any absence of information is noted in the
discussion).

2.3 Bitcoin

2.3.1 Introduction to Bitcoin

Bitcoin came to life with the publishing of a paper called “Bitcoin: A Peer-to-
Peer Electronic Cash System” by an anonymous author or group called Satoshi
Nakamoto [21]. Bitcoin6 is a collection of concepts and technologies that form
the basis of a digital currency ecosystem [5]. It is a distributed and decentralised
network, where users communicate with each other via peer-to-peer. This means
there is no central authority to handle all the transactions between users. In
the Bitcoin network, bitcoins are the units of currency, that are used to store
value among participants. The Bitcoin protocol is open-source and can run on

6Bitcoin (with upper B) stands for protocol, the software and community, bitcoin (with lower
b) stands for a unit of currency

11

laptops, smartphones, tablets and others. Having the possibility to adopt so many
platforms is making the technology very convenient for the consumers.

Users can use bitcoins to do anything that they would normally do with a
more conventional currency, meaning that it can be used for buying and selling
products, sending and receiving payments. There are several special currency
exchange ATMs (Automated Teller Machines) that accept bitcoins7 as a form of
currency and there users can buy, sell or exchange bitcoins.

2.3.2 Business Layer

This section will give an overview of the business layer for Bitcoin, presented
in Figure 2. It consists of six major components - Actors and roles, Services and
four processes: Network Discovery process, Transaction Creation process, Block
validation process and Mining process.

Figure 2: Archimate business layer for Bitcoin

Actors and roles: In the blockchain context, each node is an actor in the net-
work, but actors perform different operations. Based on that, two roles are defined:

• Client - user of the technology that wants to send or receive bitcoins. To do
so, a transaction is created, signed and broadcasted to the network.

• Miner is an actor who mines bitcoins. This means validation of transactions,
generating blocks and submitting them to the network, to be included in the

7http://www.coindesk.com/bitcoin-atm-map/

12

blockchain. When submitting a valid block, miner is rewarded with bitcoins
(for the work done on the proof-of-work algorithm).

Services: There are two main services displayed on Figure 2. Transaction cre-
ation service allows the client to create a new transaction and send it to the Bitcoin
network (to transfer bitcoins to another user). The Miner will use Bitcoin’s Mining
services to be able to mine bitcoins.

Processes: There are 4 sets of processes displayed on Figure 2: Network dis-
covery process, Transaction Creation process, Block validation process
and Mining process.

The first process that every node in the network interacts with in the beginning
is the Network discovery process, seen on Figure 3. This process is split into
4 sub-processes:

Figure 3: Network discovery process

• Finding known Bitcoin peers (Figure 4) - how a new node can find known
peers IP addresses to connect to the network. New node will either get a
known IP from unknown 3rd source, another person for example, or it can
query the DNS seed list for known IPs. Once node has IPs, it can connect
to a network.

• Handshake process (Figure 5) - Once connection with the known IP address
is established, the new node has to transmit a version message to the existing
node, in order to verify that they are running the same version of the software.
The existing node can either choose to respond to the request or not. In the
positive case, existing node will reply with its version message and a verack
message. Verack message is sent to acknowledge that the peer is willing to
connect [5].

• Discover additional peers - Once the new node receives the confirmation, it
sends its IP address for other nodes to be propagated around the network

13

Figure 4: Expanded peer finding process in the Network discovery process

Figure 5: Expanded handshake process in the Network discovery process

and/or it can ask the neighbouring node for IP addresses of other nodes, to
establish further connections.

• Block synchronization - When first connecting to the blockchain and before
the new node can start validating transactions and newly mined blocks, it
has to download and validate the entire blockchain from the very first block.
The new node will download the longest chain based on what its neighbours
have (in the handshake process, nodes exchange information about the latest
block). When connecting to the network next time, node will synchronise all
the blocks that have been added since last connection [2].

Transaction Creation process (Figure 7) describes creating transactions
and transmitting them to the Bitcoin network. Process begins with the Client

14

Figure 6: Expanded additional peer discovery process in the Network discovery
process

Figure 7: Process of creating a transaction in Bitcoin

specifying the amount of bitcoins to send and the receivers Bitcoin address. Then
the transaction is constructed and the client will sign the transaction with a pri-
vate key. After signing, the transaction is transmitted to the neighbouring nodes,
who will validate the transaction [5]. If the transaction is valid, they will propa-
gate the transaction to other neighbouring nodes who repeat the validation pro-
cess. Additionally, node will keep the transaction in the memory (called unverified
transaction pool). Otherwise, if the transaction is invalid, the neighbouring node
will not propagate it forward.

Mining process on Figure 8 explains the generation of a new block and sub-
mitting it to the network to be included in the global blockchain. New block is
triggered when the previous block has been mined, broadcasted to the network
and valid. Miner first creates a new block from a template, collects unverified
transactions, adds the hash value from the previous block and a generation trans-

15

Figure 8: Process of mining bitcoins - creating a block, validating transactions and
providing the proof for the block

action, which will reward the miner on creating a successful block. Then the race
for calculating the proof-of-work starts. Whichever miner is the first to find the
solution and broadcast the new block to the network (to be added to the global
blockchain), will receive the reward for that block. Once a new block is broad-
casted on the network, other miners will stop mining the current block and begin
working on a new one.

Figure 9: Block validation process

When the new block is submitted to the network by the miner, it is not added
to the blockchain right away. Nodes in the network will know when a new block
has been mined, and then each of them will validate the block according to the
consensus rules (see Figure 9). If the block is valid, they will add the new block to
their local blockchain. This independent validation ensures the consensus in the
network, because everyone is validating based on the same rules. The consensus
rules in Bitcoin [5]:

16

1. Block data structure validation
2. Block Header validation
3. Block timestamp validation
4. Block size validation
5. First (and only the first) transactions is a generation transaction, that will

reward the miner
6. Validation of all the transactions included in the block

Data models: Bitcoin implementation has two main data objects: Transaction
and Block (see Figure 10).

Figure 10: Bitcoin domain model

Block is a container data structure that aggregates the transactions that are
to be included in the blockchain. The block consists of a header, containing meta-
data (a reference to a previous block hash, which connects the given block to the
previous block in the blockchain, the difficulty of the block, timestamp, nonce)
and a list of transactions [5].

Transaction is a representation of a payment in the system. Transaction con-
tains a transfer of value from a source of funds, called a transaction input, to a
destination, called a transaction output [5].

Every bitcoin transaction creates outputs, which are recorded on the blockchain
as unspent transaction outputs (UTXO) and are recognized by the whole network.
Sending bitcoin means creating an UTXO registered to receivers address and avail-
able for them to spend [5].

Transaction inputs are pointers to UTXO. They point to a specific UTXO
by reference to the transaction hash and sequence number where the UTXO is
recorded in the blockchain. To spend UTXO, the receiver has to prove ownership

17

of the Bitcoin address8, which means only the person who was meant to receive
the bitcoins, can spend them.

2.4 MultiChain

2.4.1 Introduction to MultiChain

MultiChain is a platform that allows creation and deployment of private blockchains.
MultiChain introduced a number of shortcomings with Bitcoin’s solution [14]:

• Scalability and cost:
– Limited capacity - Bitcoin blockchain supports roughly the same amount

of transaction per day, as big financial services, like Visa, process in cou-
ple of minutes. Maximum block size in Bitcoin can be increased, which
will increase the number of transactions per day, but also the costs,
because miners are required to do more work.

– Transaction costs - Transaction fees are gathered by miners, but Bitcoin
uses prioritization, where transactions with greater fees get processes
faster, meaning delays for smaller transactions.

– Irrelevant data - Full Bitcoin node has to download the entire blockchain
and verify it from the beginning. This takes time and space and might
be irrelevant to certain institutions.

• Privacy and security:
– Mining risks - Bitcoin’s proof of work is sufficient for general purpose,

but for institutional use the unpredictable delay in the transactions or
the potential of 51% attack is considered as a risk.

– Lack of privacy and openness - Bitcoin’s blockchain is completely open
and viewable from the internet. Every transaction can be traced back
to the first one and linked to a certain Bitcoin address. In addition, it
is claimed that Bitcoin is an attractive network for illegal transactions,
since Know Your Customer can not be forced on the network level.

MultiChain aims to solve theses issues via integrated management of user per-
missions. The core aim is following: 1) blockchain’s activity is only visible to
known participants, 2) introduce controls to permit transactions, 3) secure and
inexpensive mining.

2.4.2 Business Layer

Business layer for MultiChain is presented in Figure 11. Consists of five major
components discovered from the literature: Actors and Roles, Services, Network
Discovery process, Transaction creation process and Mining process.

8Unlock the Locking-script using the private key corresponding to Bitcoin address

18

Figure 11: MultiChain business layer

Actors: We have identified 2 main actors for MultiChain:
• Client - can issue assets and send a quantity of assets to another user, create

streams and publish data to stream or grant and revoke permissions if the
client is an administrator on the chain. Client can perform all of these
operations via transactions.

• Miner - can mine blocks. Miner of the first block in the blockchain, known
as the “genesis” block, will be granted administrative privileges. From there,
miner can also grant access and privileges to users.

Services: There are total of 5 identified main services:
1. Issue assets - create new assets
2. Create transactions - create transactions to transfers assets, create streams9,

privilege management and other.
3. Grant privileges - there are total of 8 permissions that can be granted: Con-

nect, send, receive, issue, create, mine, activate and admin.
4. Revoke privileges - remove privileges from users
5. Mine blocks - perform block mining

Processes: MultiChain presents three processes that were discovered from the
documentation10 [14]: Network Discovery Process, Transaction creation

9http://www.multichain.com/developers/data-streams/
10http://www.multichain.com/developers/

19

process and Mining process.
C

on
nc

tin
g

 to
 a

 k
no

w
n

 n
od

e
on

 M
u

lti
C

ha
in

N
ew

 n
od

e
K

no
w

n
pe

er
on

M
ul

tiC
h

ai
n

Connection
established

version

Challenge
message
received

Sign with
private key and
send challenge
message back

Transmit
version, verack
and verackack

message

verack

verackack

Challenge
message
received

Connection
granted

Receive version
message

Verify version
and permitted
public address

Challenge
message
received

Verify
blockchain
parameters

Verify that
connecting
node is one

same
blockchain

Send challenge
message

Sign with
private key and

send back

Figure 12: Handshake process in MultiChain

Network discovery process is similar to the one provided by Bitcoin, but
since MultiChain provides permissions, the “handshake” process is different with
the inclusion of a verackack message (see on Figure 12). The new MultiChain
node has to get a name, IP and port number of the blockchain it wants to connect
to (finding known peers). First step in the handshake process is to verify that
two connecting nodes are on a blockchain with the same name and using same
blockchain parameters. Next, each node presents its identity as a public address,
that has permissions to connect to the blockchain, and the corresponding private
key. If the node does not have permissions to connect, node’s address should be
presented to the administrator who can grant him the permission to connect. Then
each node sends a challenge message to the other party and each node sends back
a signature of the challenge message, proving their ownership of the private key
corresponding to the public address they presented.

Issuing and sending quantities of assets, create streams and publishing data
to streams, granting and revoking privileges - all of these can be performed by
creating a transaction, that contains specific metadata. Transaction creation
process is described in detail on Figure 13.

When creating a new blockchain, the miner of the first “genesis” block au-
tomatically receives all privileges, including administrator rights to manage the
privileges of other users. Admin can then grant privileges to other users by send-
ing transactions, which contain users addresses and metadata, which lists granted
permissions. Permissions can be granted permanently or temporarily, by specifying
the start block and end block.

When creating a regular transaction, that transfers funds from one account
to another, the transaction is valid if the senders address has a ’send’ permission
and the receivers address has ’receive’ permission. If one or the other is missing

20

C
lie

nt

Transaction
creation

Verify an input
with 'send'
permission

Verify an input
with 'issue'
permission

Verify an input
with 'create'
permission

Verify an input
with 'admin'
permission

Verify an output
with 'receive'
permission

Set asset name
and quantity

Set address and
permission(s)

Set asset name,
quantity and

receivers
address

Transaction
created

Set stream
name and

details

Sign the
transaction

Send the
transaction to
the network

Transaction

Regular
transaction

Issue new
asset

Create
new

stream

Manage
permissions

M
ul

tiC
h

ai
n

bl
oc

kc
ha

in

Figure 13: Creating a transaction in MultiChain

a permission, the transactions is invalid. When creating a new asset or a new
stream, transaction must include an input that has been signed with an address
with ’issue’ or ’create’ permission respectively.

In the mining process (Figure 14), ’mine’ permissions are required to mine
blocks and in order to receive a fee (if one is set), miner must also have ’receive’
permission.

M
in

in
g

Block mined or
another miners

turn

Check for 'mine'
permission

Apply
permission
changes in

order

Count number
of miners after

new
permissions

Spacing =
Number of

miners * mining
diversity

Can mine a new
block?

Construct a new
block

Collect
unverified

transactions

Unverified
transactions

Block

Mining stopped

Submit new
block

Mining diversity

for each
transaction

No

Yes

M
ul

tiC
h

ai
n

Figure 14: MultiChain mining process

21

MultiChain forces a mining scheme, where permitted miners must mine new
blocks in rotation. Depending on the mining diversity parameter, strictness of
mining can be configured. This helps to ensure that no single miner will dominate
mining on the given blockchain.

Validity of a transaction is confirmed if the total quantities of all the assets in
the outputs are strictly equal to the total in transaction inputs and depending on
the type of transaction, an input has to exist that is signed with an address with
certain permissions, also shown on Figure 13.

The validity of the block is verified in four steps [14]:
1. Apply all the permissions changes defined by transactions in the block in

order.
2. Count the number of permitted miners who are defined after applying those

changes.
3. Multiply miners by mining diversity, rounding up to get spacing.
4. If the miner of this block mined one of the previous spacing-1 blocks, the

block is invalid.

Data models: Documentation for MultiChain lacks concrete descriptions for
main entities, but based on [14], MultiChain uses the same Block and Transaction
model described in Bitcoin. This model is also depicted on the business layer
Figure 11.

2.5 Ethereum

2.5.1 Introduction to Ethereum

Ethereum is a project which attempts to build the generalised technology -
technology, on which all transaction based state machine concepts may be built
[27]. It is a Turing-complete contract processing and execution platform based on
a blockchain ledger. It is a completely independent design and implementation
compared to Bitcoin [5]. This system can be said to be a very specialised version
of a cryptographically secure, transaction-based state machine [27].

Ethereum does this by building what is essentially the ultimate abstract foun-
dational layer: a blockchain with a built-in Turing-complete programming lan-
guage, allowing anyone to write smart contracts and decentralized applications
where they can create their own arbitrary rules for ownership, transaction formats
and state transition functions [12].

The Ethereum blockchain can be alternately described as a blockchain with a
built-in programming language, or as a consensus-based globally executed virtual
machine. The part of the protocol that actually handles internal state and com-
putation is referred to as the Ethereum Virtual Machine (EVM). From a practical

22

standpoint, the EVM can be thought of as a large decentralized computer con-
taining millions of objects, called “accounts”, which have the ability to maintain
an internal database, execute code and talk to each other.

2.5.2 Business Layer

The business layer for Ethereum is presented on Figure 15. Consists of six
major components - Actors and Roles, Services, Network discovery process, Trans-
action creation, Block validation and Mining process.

Figure 15: Ethereum business layer

Actors: There are total of three actors in Ethereum [12] presented in Figure 15:
• Externally owned user accounts (EOA), which are controlled by private keys.

This actor can create transactions to transfer value, create smart-contracts
or call contract functions.

• Contract accounts (CA), which are controlled by their code. Every time it
receives a message, its code executes, allowing it to read and write to internal
storage and send messages to other contracts or create contracts in return.

• Miners validate transactions and also the smart-contract code execution.
The transactions are wrapped in a block and proof-of-work will be provided
for the block.

23

Services: Figure 15 shows four services Ethereum actors interact with: 1) Create
transactions 2) Create contracts 3) Send messages 4) Mine ether.

Processes: Figure 15 shows four processes. The processes, Block validation,
for validating blocks, Network discovery, which is necessary for a new node
to join the network, Transaction creation, which allows user to create transac-
tion or contracts and allows contracts to create transactions and messages, and
Mining, which describes the mining process and broadcasting a new block to the
network.

Figure 16: Network discovery in Ethereum

The Network discovery process, seen on Figure 16, begins by establishing
a connection to a bootstrap node (a node which IP comes from the source code,
is assumed to be always online and is connected to other regular nodes). Once
connected, the bootstrap node will share IPs of peers connected to it and the new
node will synchronize with the other nodes. If the node is connected to other nodes
as well, there is a possibility to prune the bootstrap node, leaving only connection
to other regular nodes.

Transaction creation process (Figure 17) is complex in Ethereum, since it
supports smart contracts. Initially, EOA has 2 choices (because contract functions
can not be called if there are no contracts), either to send a standard transaction
to another EOA (transfer ether) or create a new contract. When a contract has
been created, EOA can create new transaction that can call the functions of the
smart contract, described in the data of the transaction.

Contract accounts can send messages. Messages are essentially like transac-
tions, difference being that it is produces by a CA. CA-s can either send ether to
an address that is stored in the internal storage of the contract, or create and send
messages to other contracts.

24

T
ra

ns
a

ct
io

n
cr

ea
tio

n

E
xt

er
na

lly
 O

w
ne

d
A

cc
ou

nt
C

on
tr

ac
t A

cc
ou

nt

Transaction
creation

Add contract
code

Add contract
creation fee

Add value and
receivers
address

Add recipients
address, value

and data

Contract

Transaction
creation

Add contract
address and

input data

Add receivers
address and set

the value of
ether to be sent

Transaction
created

Receivers
address

Contract address

Internal storage

Submit the
transaction to
the network

Contract creation

Standard
transaction

Send ether

Send Message

Contract
function

E
th

er
e

um
ne

tw
or

k

Figure 17: Creating a transaction in ehtereum

Before taking a look at mining in Ethereum, we need to understand the concept
of state transition (see Figure 18). Ethereum keeps a state and transaction alters
the state. If there are no errors in altering the state, it becomes the new state in
the next block. The state transition process consists of following steps:

1. Verify the structure of the transaction (signature and nonce)
2. Verify that the sender has enough balance to cover the transaction fee
3. Initialize GAS with the given input amount of START GAS
4. Transfer the value from sender to receiver. If receiver EOA does not exist,

one is created. If the target was CA, code is executed until finished or until
it runs out of gas. Contracts can Read or Write to its internal storage, read
the message data or create a new message that is sent to another contract
or to an EOA.

5. If transfer fails because sender EOA did not have sufficient balance or code
execution runs out of GAS, all changes are reverted, except transaction fees,

25

S
ta

te
 tr

an
si

tio
n

pr
oc

es
s

New transaction

Sender has
enough balance

Transaction
invalid

Execution started Execution
stopped

Run the code

Read/Write
internal storage

Read message

Create
message

Refund GAS

Transaction valid

Verify signature
and nonce

Calculate
transaction fee
and subtract it
from sender

Initialize GAS

Transfer the
value from
sender to
receiver

Transaction
invalid

Revert
everything

expect
transaction fees

Out of gas

Target is contract

Target is
externally owned

account

Figure 18: Ethereum state transition process

which are transferred to the miner.

Figure 19: Ethereum mining process

The mining process on Figure 19 begins when a miner detects that new
transactions are broadcasted to the network. Then the miner will find ommers,
which are valid blocks, but not part of the main chain, and include them into the
block header. Then the miner will compute a valid state, which means validating
the transactions and messages, executing code and checking that the execution
does not run out of gas (expanded process can be seen on Figure 18). If a valid
state is computed, miner also has to provide the proof-of-work. After all this,

26

miner can broadcast the new block to the network. If a new block was already
broadcasted, miner will move on to creating the next block.

Block validation process is described in Figure 20. All of the block’s compo-
nents are validated, including the proof-of-work and state validation (by executing
the transactions). This is done by every full node in the network before they add
the new block to their blockchain.

Figure 20: Block validation in Ethereum

Data models: The Data model is presented in Figure 21. Account contains a
nonce, which is equal to the number of transactions sent from given account [27]
and the balance of ether. If the account is a CA, there is also the contract code
and storage for the contract.

Transaction in Ethereum is a signed package of data, that stores a message that
is to be sent from an EOA. The receiver can either be an EOA or CA. Simplified,
the transaction contains the address of the recipient, signature of the sender, from
which the address can be extracted, amount of ether, data (in case creating a
contract or calling a function) and start gas and gas price.

Block contains a list of transactions. In addition, block holds a block header,
which contains the most information - hash of the parent block, block number, gas
limit, gas used for the given block, timestamp and nonce.

Receipt is an entity that keeps information about the post transaction state,
the total gas used creating the block and logs of the transactions. Contracts have
the ability to write to logs and they can be observed later if needed.

27

Figure 21: Ethereum domain model

2.6 Chain Core (Chain Protocol)

2.6.1 Introduction to Chain Core

Chain Protocol [8] is a design for a shared, multi-asset, cryptographic ledger.
It supports the coexistence and interoperability of multiple independent networks,
with different operators, sharing a common format and capabilities.

The Chain Protocol allows any network participant to define and issue assets by
writing custom “issuance programs”. Once issued, units of an asset are controlled
by “control programs”. These programs are expressed in a flexible and Turing-
complete programming language that can be used to build sophisticated smart
contracts.

Each network is secured by a federation of “block signers”. The system is
secure against forks as long as a quorum of block signers follows the protocol. For
efficiency, block creation is delegated to a single “block generator”. Any node on
the network can validate blocks and submit transactions to the network.

Chain Core is an enterprise software product that implements the Chain Pro-
tocol and is used as the basis for modeling.

2.6.2 Business Layer

The business layer for Chain Core is presented in Figure 22. It features five
major components: Actors and Roles, Services, Transaction process, Consensus
process and Network discovery process.

28

Figure 22: Chain business layer.

Actors: Clients/Users in Chain are issuer and spender. Issuers can issue assets
(they write an “issuance program”), spenders can spend transaction outputs (if
“control programs” allow them to). Blockchain operators are split into two roles as
well - Block generator (one of the operators will be the designated block generator)
and block signers. Block operators perform four basic tasks - Access management,
Gather valid transactions from participants, Generate and sign blocks of valid
transactions, Distribute blocks to participants

Services: Define and Issue new assets. Submit transactions. Gather valid trans-
actions. Generate block. Access management. Publish block. Sign block.

Processes: Network discovery process (Figure 23): When a new blockchain
is created, the Block Generator has created a network token which will be dis-
tributed to participants that want to connect to the blockchain. Participant has
to also provide block generator URL and blockchain ID. If Block Generator re-
ceives a request to connect with a specified network token, access is granted and
the participant will begin downloading the latest blockchain data from the Block

29

Generator.

C
on

ne
ct

in
g

to
 C

ha
in

 b
lo

ck
ch

ai
n

C
ha

in
 b

lo
ck

ch
ai

n
pa

rt
ic

ip
an

t

Connection
started

Specify block
generator URL,
network token

and blockchain
ID

Download
blockchain data

Refusal Connection
terminated

Approved Connected to
Chain blockchain

B
lo

ck
ge

ne
ra

to
r

Figure 23: Connecting to Chain blockchain.

Transaction process (Figure 22) - Creating a transactions means to either
issue a new asset or spend an existing asset. When issuing a new asset, it must
comply with the issuance program defined on the blockchain. If valid, transaction
can be submitted to the network. When spending an existing asset, it must comply
with the control program, which specifies what is required to spend an asset. For
example, spending an asset X might require a signature from the asset issuer.

Consensus process (seen on Figure 24) is carried out by two roles:
• Block Generator

1. Accept transactions from participants in the network and collect them
2. Periodically validate the transactions and generate a Block of valid

transactions
3. Sign the Block
4. Send the Block to Block Signers for signatures
5. Distribute the Block to the network

• Block Signer
1. Accept a Block from Block Generator
2. Validate the Block
3. Validate each Transaction in the Block
4. Sign the Block
5. Send the signed Block back to Block Generator

Data models: The Data model is presented in Figure 25. The purpose of a
Chain blockchain network is to manage issuance, ownership, and control of digital
assets [8]. Assets are issued, transferred, and exchanged by posting transactions

30

C
on

se
ns

u
s

B
lo

ck
 G

en
er

at
or

B
lo

ck
 S

ig
ne

r

Transactions
received

Collect
transactions

Batch valid
transactions into

a Block

Sign Block and
send to Block

Signers

Validate
transactions

for each
transaction

Gather
signatures

Submit new
Block

for every block
signer

Send Block
back to Block

Genrator
Sign the Block

Validate the
Block

Validate
Transactions

Unverified
transactions

Period X

New
transactions

Block received

Block

C
ha

in
N

et
w

or
k

Figure 24: Chain consensus process.

to the network. These transactions are ordered and batched into blocks, which
together form an immutable blockchain.

Figure 25: Chain domain model

Multiple types of assets are supported by a single chain [8]. Each asset has an
unique asset ID, which corresponds to a issuance program, that defines the rules
for issuing units of the given asset. Once units have been issued, the rules for
spending them are determined by control programs.

31

Transaction has inputs and outputs [8]. Input specifies a value - either issuance
of new units or output from previous transactions. Output specifies a destination -
a control program that defines the rules of spending them in the future. Each input
and output specifies a quantity of a single asset ID. Each input must satisfy an
issuance program or a control program. The issuer or spender may pass arguments
to the program via the witness field. Each transaction, and each individual input
and output, includes a reference data field for arbitrary application-level uses.

Each block header contains the hash of the previous block. A block contains
the hash of all its transactions and the hash of the current state - the set of current
unspent outputs. To prevent unauthorized participants from creating new blocks,
each new block must satisfy a consensus program, which is specified in the header
of the previous block [8].

2.7 Answers to Research Questions

In this chapter we defined the research protocol and reviewed the state of the
art to answer the research question “What is the current state of the blockchain
technology and how to model the representations?” SRQ1 in Section 1.1. For a
more convenient answer, this question was broken down into three sub-questions.

What are the considered properties that we are looking for in the
blockchain technology? - We defined four properties: Actors, Services, Pro-
cesses and Data models.

What blockchain technology implementations to select? - We re-
viewed four distinct platforms: Bitcoin, MultiChain, Ethereum and Chain core.
These platforms were chosen because each of them brings something new to the
blockchain technology. Bitcoin and Ethereum are examples of public blockchains,
while Bitcoin being transaction based and Ethereum being smart contract opti-
mised blockchain. Opposed to public blockchains, MultiChain and Chain Core
provide private blockchains, where participants are known and they are controlled
by admin or a group of admins on the blockchain, so at all times it is known who
has access to the blockchain and what operations they can perform.

What modeling languages to use to model the representations? -
These four platforms were modeled, according to the properties, with three differ-
ent modeling languages: ArchiMate for top-level view of the technology, BPMN
for detailed process models and UML for detailed class diagrams.

Having such a variety of public / private and transaction based / smart contract
based platforms, we can see what are the differences in services and processes, that
allow for such kind of solutions for the blockchain technology. The next section
will provide comparison of the proeprties and aims to build a conceptual reference
model to represent the blockchain technology.

32

3 Contribution
This chapter describes my contribution to this thesis and provides answers for

research question “How to build the reference model?” (SRQ2 in Section 1.1). To
help us answer this questions, we have broken it down into following sub-questions:
1) What are the differences and similarities between the considered properties? 2)
What are the criteria for including an entity in the reference model? First, a
comparison between the technologies is presented (based on the state of the art
review done in Chapter 2), followed by a discussion on what components and
entities are included in the reference model.

3.1 Technology Comparison

In the research protocol (see Section 2.2.1), four key elements were defined that
were looked into regarding the selected technologies: Platforms, Actors, Services
and Process. The chosen platforms are described in previous section: Bitcoin,
MultiChain, Ethereum and Chain Core. For this section, the aim is to analyse
Actors, Services, Processes and Data models.

3.1.1 Actors

As mentioned, Blockchain technology relies on a decentralised network of indi-
vidual nodes - but nodes have different purposes and different roles regarding the
ecosystem and from these specialities actors are defined. Table 2 shows overview
of actors for all of the platforms.

Table 2: Overview of actors from different platforms

Platform Actors
Bitcoin Client, Miner
MultiChain Client, Miner
Ethereum Externally Owned Account, Contract Account, Miner
Chain Core Client, Blockchain operator

For each platform, except Ethereum, there exists a notion of a Client and a
Miner or someone who builds and agrees upon which transactions are included in
a block. Client generally being the one who interacts with the blockchain (create
and broadcast transactions). Ethereum introduces Externally Owned Account
(EOA), that can be considered as the physical actor, and additional Contract
Accounts (CA), that can be thought as a system user, a virtual account which acts

33

upon requested by an EOA or by another CA. Because CA is created by an EOA
and as Ethereum Whitepaper mentions, that they are autonomous agents living
inside the execution environments [12], we do not consider CA as a separate actor.
Miners deal with validating transactions, state changes and blocks. In Chain Core,
since it is a private blockchain and there is no need for anonymity, has Blockchain
operators, who are either block generators or signers. Fundamentally, a “blockchain
operator” is a miner, because miner’s tasks in a blockchain environment are to
create new blocks, sign them, validate them and submit them to the blockchain.

To conclude, we can say that a blockchain ecosystem has two actors from
business perspective:

• Human actor who interacts with the blockchain by adding content by creating
transactions. This actor will be called “User”.

• Human or system actor responsible for verification and validation of trans-
actions, building new blocks, signing new blocks and publishing new blocks
to the blockchain. This actor will be called “Block generator”, because the
main purpose is building blocks.

3.1.2 Services

This section will give a comparison between the business level services provided
by the reviewed platforms. The services from different platforms are presented in
Table 3.

Table 3: Overview of services from different platforms

Platform Services
Bitcoin Create transactions, Mine bitcoins
MultiChain Create assets, Create transactions, Grant permissions, Revoke

permissions, Mine blocks
Ethereum Create transactions, Create contracts, (Send messages), Mine

blocks
Chain Core Define and Issue assets, Submit transaction, Validate block,

Gather valid transactions, Generate block, Publish block, Sign
block, Determine who can participate in the network.

Firstly, every platform provides a service to create/submit transactions to the
network. This is essential because transactions dictate the state of the blockchain
and enable addition of new data to the blockchain.

MultiChain and Chain Core both have the notion of assets, which is a type of
value, that is issued on the blockchain. While Bitcoin and Ethereum both have

34

their native currencies, bitcoin and ether respectively, MultiChain and Chain core
allow creation of different assets.

While Bitcoin and MultiChain are purely based on transactions, Ethereum and
Chain core also rely on state and smart contracts. Ethereum provides a service to
create a new contract, that can be submitted to the network. Chain Core allows
the use of smart contract while issuing assets because it has to define business rules
for issuing new units of given assets and also rules for spending the assets. For more
complex rules, smart contracts (or “issuance programs” and “control programs” as
they are called in Chain) provide a good solution.

Since MultiChain and Chain core are both designed to support private blockchains,
both support services to manage privileges. MultiChain provides services for grant-
ing and revoking permissions to and from specific users. Chain Core, as we know
from actors comparison, defines Blockchain Operators, who have the control over
who can access the blockchain.

When it comes to mining, all platforms except Chain Core have a specific
service for mining new blocks. Mining in Bitcoin and Ethereum is publically
available for anyone, while in MultiChain user needs to have ’mine’ permission
to perform mining. In Chain Core, traditional miners job is split into 2. Block
generator will use services like gathering valid transactions, generate a block and
publish it. Block signers, who validate and sign the block, use block validation
services and block signing services.

In conclusion, common services among the technologies are creating transac-
tions, validating blocks and mining / creating blocks. Additionally, permissioned
blockchains provide services to manage permissions and access. Overall, it depends
on the features blockchain offers - with Bitcoin being the most generic blockchain,
the number of provided services is different compared to Chain or MultiChain.
Features like assets, smart contracts and permissions add additional services to
the commonly offered ones.

3.1.3 Processes

Table 4 provides overview of the processes from different platforms and this
section will give a comparison between them. Many of the platforms have similar
general processes, but looking at the details we can see that one is more complex
then the other.

35

Table 4: Overview of processes from different platforms

Platform Processes
Bitcoin Network discovery process, Transaction creation process, Mining

process, Block validation process
MultiChain Handshake process (network discovery), Transactions creation

process, Mining process
Ethereum Network discovery process, Transaction creation process, Mining

process, Block validation process
Chain Core Network discovery process, Transaction process, Chain consensus

process,

Every platform has a network discovery process, which allows new nodes
to connect to existing peers and discover the network. In the case of Bitcoin
and Ethereum the process is simpler compared to private blockchains. This usu-
ally involves a new node connecting to a known peer (either knowing IPs from
previously connecting to the network or allowing the software to query IPs from
outside source or read hard-coded values embedded into the system), verifying
certain parameters, such as same version of the software blockchain properties and
the current longest chain on either nodes. If there are any differences, the nodes
will synchronize blockchain data (meaning the new node will match the longest
chain on other nodes). The handshake process for MultiChain and Chain core are
different from Ethereum and Bitcoin, due to the privacy of the blockchain.

MultiChain expands to Network discovery process introduced in Bitcoin. In
addition to verifying that node is connecting to the same blockchain and using the
same version of the software, the known peer must also verify that the connecting
node’s public address is on the permitted list. If the node is allowed to connect
to the blockchain, both nodes still have to prove that they own the public address
(key) by signing it with their private key. Once proven, the new node is granted
access to the network and it’s address is propagated to the network, making sure
all the existing nodes know that a new one has connected.

In Chain core, connecting node has to specify block generator’s URL, provide
network token and blockchain ID. It is assumed, that all of the previous is handed
out to the connecting node by the block generator itself, because in the private
blockchain, the participants are known users.

Another general process that all platforms have in common is the process re-
lated to creating and submitting transactions to the network. Creating the
transaction in Bitcoin requires user to enter amount and the receivers Bitcoin ad-
dress. The process will check if the user has enough unspent outputs to make
the transaction. If so, the transaction is constructed, signed and transmitted to

36

the network. Since Bitcoin is meant for transfer of value, MultiChain adds cer-
tain metadata to the transaction to understand what the transaction is for and
also checks the user for privileges (for example, is the user allowed to submit this
kind of transaction). MultiChain uses similar Input-Output style as Bitcoin, so
in order to execute a similar regular transaction in MultiChain, the sender has to
have ’send’ permission and receive has to have ’receive’ permission. Also, since
MultiChain supports multiple assets, in addition to amount and receivers address,
user also has to specify the asset name. To issue new assets, create new streams
or manage permissions user must also have the specific privileges. Once the raw
transaction is constructed, it is signed and transmitted to the network.

Transactions also work on the Input-Output principle in Chain, similar to
Bitcoin and MultiChain. In Chain, transactions allow to issue new assets or spend
existing units of assets. When issuing new assets, it has to comply with the rules
defined in the issuance program. When spending assets, similar to Bitcoin, the
amount of unspent transaction outputs must cover the value of the new transaction
and in addition, the transaction must satisfy the conditions set by the Control
program, which defines the rules for spending assets. Compares to MultiChain,
Chain core does not have specific permissions to do certain operations, but instead
have issuance and control programs.

Ethereum also supports regular value transactions, but does not use the Input-
Output verification. Since Ethereum always maintains the state of the blockchain,
the only requirement is that the current state has enough ether that will cover the
value of the transaction. The input parameters for the transaction are similar to
Bitcoin and MultiChain - amount to be transferred and address of the receiver.
In addition to regular transactions, Ethereum allows to create contracts and call
contract functions. In contrast to MultiChain, Ethereum is public blockchain and
does not require any privilege checks.

Another common process among Bitcoin, MultiChain and Ethereum is the
Mining process (Block generation). Bitcoin’s mining process is based on the
proof of work. A miner will build a new block, adds unverified transactions,
adds metadata, calculates the proof of work and if he is the first one to find the
proof, he can submit the block to the network. Ethereum’s mining process is also
based on the proof of work, but since Ethereum does not have the Input-Output
transaction style, instead tracking the state of the blockchain, the mining process
also requires a state transition process. In the state transition process transactions
are verified and in the case of contract creation / calling contract function, code
execution is also performed. Once transactions are verified by the state transition
process, the miner in Ethereum will also calculate the proof of work and if he is the
first one, can also submit the block to the network. MultiChain, being a private
blockchain, claims that since all of the participants are known, there is no need

37

for the exhaustive proof of work. Also, in addition to permissions, the miner has
to have ’mine’ permission and it is important that the transactions are executed
in order, for it to correctly record the grant and revoke operations of permissions.
MultiChain also introduces a round-robin style mining to prevent one miner doing
all the work - Mining diversity is responsible that all the miners will get a chance
to mine new blocks.

Compared to Bitcoin, MultiChain and Ethereum, Chain core introduces a
“Chain consensus process” instead of mining. When a new transaction is sub-
mitted, it will be transferred to the Block generator who will add it to the new
block. After certain periods, Block generator will send the block over to block
signers, who will verify the block and sign the block, after which it is sent back
to the Block generator. The Block generator can only submit the block if the
required block signers have signed the block. Also to note, since Chain is a private
blockchain, the blockchain operators are known at all time.

Bitcoin and Ethereum also explicitly introduce the block validation (con-
sensus) process, that each node will perform once the miner has submitted a new
block. Since these are public blockchains and the miners are anonymous, there has
to be a guarantee that the miner has indeed produced a valid block. This is what
the block validation (consensus) process is for. In Bitcoin, block data structure,
header, timestamp, size and all of the transactions are verified by all of the nodes
in the network. In Ethereum, each node will verify that the previous block exists,
validates the timestamp of the new block, number, difficulty, transaction roots,
uncle roots and gas limits. Also, each node will verify the proof of work and run
through the state transition process. In Chain Core, the consensus is provided by
block signers, who do the validation.

To conclude, the four platforms each provide similar general processes: Net-
work discovery, transaction creation, Block generation and submission (Mining and
Chain consensus process) and Block validation process, but there are differences
when it comes to what tasks are performed in each process:

• Similarities:
– Network Discovery - New nodes need information about where to con-

nect to. In the case of Bitcoin and Ethereum you need to know the IP
of a peer to connect to. In MultiChain you need to know the name/IP
of the blockchain. In Chain, User needs to know the url of the Block
generator. When connected, there is a check to see if both nodes are
running the same version of the software, are on the same blockchain
and both nodes have the latest and longest chain of blocks. Also, once
connected and everything is verified, new node’s IP is propagated to
the network so existing nodes will know that a new node has connected
to the network.

38

– Transactions - Regular transactions are similar for all platforms. Con-
struct a transaction, add metadata (the metadata or data that is trans-
acted is different per platform), sign the transaction and submit the
transaction to the network.

– Mining (Block generation) - Public blockchains Bitcoin and Ethereum
are similar in a sense that they require proof of work for mining and
also miners add a special generation transaction to the block that will
reward the miner for mining the block. Private blockchains do not use
proof of work because all of the participants are known in the network.
The general idea of mining stays the same for all platforms - build the
block and fill block header with metadata, add unverified transactions,
validate the transactions and submit the block.

– Block validation (Consensus) - Both Bitcoin and Ethereum have pro-
vided block validation processes, that each node will perform once re-
ceiving a new block. The processes are similar in terms that the node
has to verify the metadata of the new block and all of the transac-
tions (for Bitcoin make sure transactions are allowed based on unspent
outputs and for Ethereum make sure the new state is valid).

• Differences:
– Network Discovery - Main differences are with the private blockchains

since they require some form of authentication. MultiChain checks that
the connecting node’s IP is in the permitted list and that the node has
the private key corresponding to the public key. Chain requires that
the connecting node has been given a network token that is generated
by the Block generator.

– Transactions - The main differences come in the form of metadata that is
provided for the transaction. Since Ethereum allows to create contracts
and call contract functions, MultiChain allows to issue assets, create
streams and grant/revoke privileges, Chain allows the creation of assets,
assigning assets and others - all of these provide different metadata
to the transaction. Another difference comes from MultiChain, where
there is a requirement for the sender to have ’send’ permission and the
receiver to have ’receive’ permission.

– Mining (Block generation) - The biggest differences in mining come
from the private blockchains - MultiChain and Chain. MultiChain in-
troduces a round-robin style mining where miners take turns mining
blocks so that there is no single dominant miner. Chain introduces
Block generators and Block signers, where Block generators build the
block and fill it with unverified transactions and Block signers sign the
block.

39

Finally, for Block validation (Consensus), the difference for Bitcoin and Ethereum
comes in the form of the state transition function. As mentioned, Bitcoin does not
keep track of the blockchain state, instead verifies transactions based on previous
unspent outputs. In Ethereum, transactions modify the state, so that each node
has to re-verify the state transition process for each transaction.

3.1.4 Data Models

Notable similarity between the four platforms is that each of the data models
have a Block, a Block header and Transactions. Bitcoin introduces the Input-
Output transactions, that is also used in MultiChain and Chain core. Ethereum
on the other hand relies on the state replication, where each new block’s state is
the outcome of the transactions that were included in the block. Ethereum has
chosen not to use the Input-Output transaction method, because it does not allow
multi-stage contracts or scripts that could keep an internal state [12].

Ethereum also has the notion of Accounts, which are either user accounts or vir-
tual contract accounts, that hold the balance, contract code and internal storage.
In Ethereum’s case, all of this is stored on the blockchain.

With the addition of Assets, Chain core keep an Asset entity containing only
the ID for the asset. The assets are tied with certain programs, either Issuance
program (for issuing new assets) or Control program (for spending assets). The
Consensus program is used by Block generator to verify that a block is ready to
be submitted to the network.

To conclude, the main set of entities for a blockchain technology are the Block,
Block Header and Transactions. The Input-Output transactions are de facto Bit-
coin solution to prevent double-spending, but there are several arguments about
the use of UTXOs and their scalability [7], so in the end it depends on the kind
of blockchain. In case of Ethereum, to enable the multi-stage smart contracts and
let them have a knowledge of the state, UTXO’s can not be used for this matter.

3.2 Reference Model

This section describes how the reference model is built using the information
gather about the state of the art and the comparison of actors, services, pro-
cesses and data models discussed in the previous section. The reference model is
presented in Figure 26. It consists of six major components: Actors and Roles,
Services, Network discovery process, Transaction process, Block validation process
and Block generation process. Components represented in darker color are part of
private/permissioned blockchains, whereas components in lighter color are specific
to public blockchains.

40

Figure 26: Complete business layer of the reference model

41

3.2.1 Actors

For the reference model, actors are chosen based on the discussion in Section
3.1.1. From the conclusion, the two main roles for the blockchain technology are
the User and Block generator, displayed on Figure 27.

Figure 27: Actors of reference model

3.2.2 Services

The services for reference model are chosen based on the comparison done in
Section 3.1.2 and are presented in Figure 28.

Figure 28: Services of reference model. Dark color represents services specific to
private blockchains

Transactions allow Users to append information to the blockchain. This infor-
mation can be almost anything, dependant on the implementation. Transactions
can be used to create assets, spend assets, create smart contracts, call functions on
smart contracts, grant/revoke permission and others. Once transaction is created,
it can be broadcasted via Transaction submission service, which will also allow

42

signing the transaction. Blockchain access is specific to private and permissioned
blockchains, where the Block generators or administrative users, who are known
identities, will grant access to known parties. Block validation is a general service
used by all the nodes to validate and agree on the newest blocks that have been
added to the blockchain.

"Mining" or Block generation has been made as generic as possible, taking into
account the differences between public (proof-of-work, proof-of-stake) and private
blockchains. Block generation is broken down into smaller services that can be
used by specific roles in the blockchain. Public blockchains with proof-of-work
will let one miner use all the services, but for example on Chain, Block signing is
specific to Block Signer role.

3.2.3 Processes

The processes for the reference model are composed based on the discussion in
the comparison of processes (see Section 3.1.3). The processes from a top-level view
are presented on Figure 26. The detailed process models are presented alongside
discussion.

The four main processes groups are: Network discovery, Transaction cre-
ation, Block generation and Consensus. The processes also have a distinct
color scheme, where tasks in darker color are performed in private blockchains and
tasks in lighter color are performed in public blockchains.

Network discovery process (displayed Figure 29) begins by acquiring a
known peers or blockchain IP. Once connected, a handshake is performed, which
could be either 1) check if the user is allowed to connect via its public IP or a net-
work token; 2) version verification 3) checking the difference between latest blocks.
After handshake, if the node has successfully connected, its IP will be propagated
to the network - letting other peers know that a new node has connected and IPs of
the existing peers will be shared to the new node. Once the network is discovered
and if there were any differences in terms of the latest block, the connecting node
will synchronise its blockchain.

Transaction process (Figure 30) begins by constructing a transaction and
adding relevant metadata, dependant on the type of transaction (standard transfer
of funds, creating assets, deploying smart contract or other). In the case of private
blockchains, there will be an additional permissions check - 1) is the specific user
allowed to create the transaction; 2) is the specific receiver allowed to receive
funds; 3) does the network allow transfer of specific funds or creation of a specific
type of transactions. If the transaction creation is permitted, User will sign the
transaction and it will be broadcasted to the network, to the neighbouring nodes.
What the nodes do with the received transactions is up to the implementation,
there could be a validity check or it could just be propagated forward to a Block

43

Figure 29: Network discovery process

generator.

Figure 30: Transaction creation process

First step in the Block generation process (Figure 31) is creating a new
block and previous block metadata is added. Unverified transactions are collected
from the pool and they will be validated. In permissioned/private blockchains
permission changes have to be applied first and in order to avoid permissionless
users performing unwanted actions. All the transaction will also be validated
against the consensus rules on the blockchain. In public blockchains, the block
generators (miners) will provide proof for the work (proof-of-work or proof-of-
stake or others) and will be rewarded for their work. In private blockchains, the
consensus process might be part of the block generation process. Once the block
is constructed, it is submitted to the network and propagated to all the nodes.

Consensus process (seen on Figure 32) is performed by each node when

44

B
lo

ck
 g

en
er

at
io

n
 p

ro
ce

ss

Validate
transactions
according to

consensus rules

for each
transaction

for each
transaction

Create new
block

Add previous
block metadata

Collect
unverified

transactions

Apply
permission
changes

Sign the block

Provide proof
Broadcast the
block to the

networkPrevious block
created

Unverified
transactions

private
blockchain

public
blockchain

Consensus
process

private
blockchain

public
blockchain

Block created

N
et

w
or

k

Figure 31: Block generation process

Figure 32: Consensus process

a new block has been broadcasted. Each blockchain defines its own “Consensus
rules”, according to which blocks and transactions are validated. Additionally, in
public blockchains, proof of the block generators work as well as the reward are
validated as well. If the block and the transactions it contains are all valid, nodes
will append the block to the blockchain. If the block is not valid, it is rejected and
not added to the blockchain.

3.2.4 Data model

The data model is presented in Figure 33. This model is mainly inspired from
the domain model of Ethereum (see Figure 21).

Keeping the state of the blockchain is preferred opposed to choosing a Input-
Output type transaction logic. Since UTXO’s are stateless [7], they are better
used for issuing assets or performing standard transfer of value (assets or cryp-
tocurrency). However, since smart contracts are powerful, keeping the state of the
blockchain allows for more complex logic.

State contains accounts, which have balance and address. In case of contracts,

45

Figure 33: Data model

they also have to keep the executable code and storage specific to given account.
Accounts are linked to transactions - each transaction changes the state of the
blockchain (balance changes, contracts function calls and others).

As standard for every analysed platform, Block and Block Header are essential
to blockchain technology. Block contains transactions, while the metadata (previ-
ous block’s hash, timestamp, number) of the block is kept in the Block Header.

3.3 Answers to Research Questions

This chapter described my contribution and how the reference model for blockchain
technology was conceived. The research question for this chapter was “How to build
the reference model?” (See SRQ2 in Section 1.1). This question was broken down
into sub-questions.

What are the differences and similarities between the considered
properties? - The reference model is the result of analysing individual platforms
of the blockchain technology, extracting relevant information from the sources (ac-
tors, services, processes, data models) and comparing the findings. The four prop-
erties were compared separately, taken into account the specifics of public/private
blockchains. Each of the entities was laid out into a table, followed by a discussion
of the differences and similarities.

What are the criteria for including an entity in the reference model?
- Based on the discussion, generalised entities that shared the most similarities
were chosen to be present on the reference model. Some entities, that were specific
to public/private blockchains and smart contracts, were also added in order to
make the model modular and be applicable to different requirements.

Now that the conceptual reference model has been built, the next two sections
present our approach to validation.

46

4 Accuracy Validation
This chapter will provide the first answer to sub-research-question “What are

the means of validating the model?” (See SRQ3 in Section 1.1). For this chap-
ter, the formulated sub-question is “How to assess the correctness of the reference
model?”. We will analyse the reference model in comparison to the four implemen-
tations used to build the model and additionally pick four new implementations
and see how the reference model performs compared to them.

Figure 34: Validation of correctness of the reference model.

4.1 Platforms Used to Construct the Reference Model

Correctness is a form of validation where we assess the accuracy of the reference
model. The validation is carried out by comparing the reference model to existing
blockchain solutions. First, we will compare the reference model to the four plat-
forms that were used to build the model itself. The models will be compared and
based on that a Delta (∆) will be calculated, which will represent the difference
between the models and will also provide validation for correctness. Once the delta
for the chosen implementations is found, we will pick 4 new implementations and
calculate the delta value for them and compare the overall results. For the first
part, our goal is to show that the reference model is sufficient to represent all four
initially chosen blockchain technologies.

4.1.1 Delta Definition

For finding the overall delta ∆, which will represent the difference between
models, we will compare actors (∆actors), services (∆services), processes (∆processes)
and data models (∆datamodels) separately. The overall ∆ will be the sum of all
deltas (∆ = ∆actors + ∆services + ∆processes + ∆datamodels). ∆ = 0 means they
have the same entities. ∆ > 0 means the reference model has more entities, for

47

example private / public / permissioned blockchain specific actors / services /
processes. ∆ < 0 means that the reference model is missing some entities, that
the comparable model has.

4.1.2 Delta Boundaries

Missing information will not be taken into account in the comparison. The
goal is to compare what was present in the literature.

∆actors - We strictly compare roles on the model. Actors with same role and
purpose will be counted as one.

∆services - We compare services or groups of services that have similar purpose,
end goal. For example services might be broken down for proof-of-stake, but they
are presented as single service for proof-of-work. Since they are both part of the
consensus process, they are counted as one.

∆processes - For each of the major processes (Networking, Transactions, Block
generation, Consensus), we compare the tasks for each process.

∆datamodels - We compare the classes presented on the models.

4.1.3 Bitcoin

Appendix A presents a side-by-side comparison table of Bitcoin and reference
model. The following discussion explains how the Delta ∆ values are derived.

Actors In terms of the reference model, Client is a User, who adds data to the
blockchains via transactions - ∆actors = 0. Miner is specific to public blockchains,
but in terms of the blockchain technology, miner is someone who adds trust to
the system, someone who creates consensus by validating transactions, building
blocks, calculating proof-of-work and publishing new blocks to the blockchain -
∆actors = 0. Overall ∆actors = 0.

Services Both of the models present Transaction creation service, but reference
model has also defined transaction submission service separately. For Bitcoin, this
functionality is included in “Create transactions” service - ∆services = 0. “Block
validation” is not presented as a service in Bitcoin model, rather something that is
done automatically by every node. “Blockchain access” is something that is specific
to permissioned blockchains and is not present in the Bitcoin model - also due to
this, it will not be taken into account for delta ∆actors = 0. Mining service is a
representation of the Block generation service - ∆actors = 0. Overall ∆actors = 0.

48

Processes The Network discovery process differs from one aspect and that is per-
mission check. This is not present in Bitcoin, because Bitcoin is public blockchain
- thus we will not count this towards the delta ∆processes = 0.

Same with Transactions, Block generation and Consensus processes, which all
introduce permission checks, but will not be taken into account for the public
Bitcoin blockchain - ∆processes = 0. Overall ∆processes = 0.

Data models Bitcoin does not feature Accounts or State defined in the reference
model, due to not having accounts and it’s Input-Output transactions nature. Due
to this, Bitcoin is not able to provide highly sophisticated smart contracts - Overall
∆datamodels = 2

4.1.4 MultiChain

Appendix B presents a side-by-side comparison table of MultiChain and refer-
ence model. The following discussion explains how the Delta ∆ values are derived.

Actors Similarly to Bitcoin, MultiChain presents two actors. Client, who in-
teracts with the blockchain by issuing assets, spending assets, granting / revoking
permissions all via transactions, and a Miner, who is equivalent to Block generator
on the reference model. Overall ∆actors = 0.

Services Creating assets, granting permissions and revoking permissions are all
part of creating a transaction, each with different type of input data presented
to the transaction that will be broadcasted to the network. Blockchain access in
MultiChain is controlled by an administrator, that created the first genesis block.
Overall - Multichain features all the same services as presented on reference model
- ∆services = 0.

Processes Network Discovery process is similar to Bitcoin’s, but with added
security. MultiChain requires that the connecting node’s public IP is on the per-
mitted list and that the connecting node verifies itself by proving ownership of the
private key. This is all part of the Handshake process in the network discovery
and will not add anything to the delta.

Transactions and Block generation both begin with a permission check to make
sure the user can perform these actions. MultiChain also introduces “spacing”
which is a round-robin like mining, where one miner can mine specific number of
blocks before the task is handed over to another miner in the network. Since there
is no available information on Consensus process, but because this is a necessary
step towards consensus on the blockchain, this process is assumed to be similar

49

to Bitcoin, based on the information that MultiChain is a fork of Bitcoin [14].
Overall ∆processes = 0.

Data models Due to limited literature, there is a lack of description regarding
the Data model for MultiChain. From the whitepaper [14], we understand that
the Transactions have similar Input-Output type as Bitcoin and Block and Block
Header are a must on blockchain technology. Since there is no mention of keeping
Accounts on the blockchain, or keeping the state - Overall ∆datamodels = 2.

4.1.5 Ethereum

Appendix C presents a side-by-side comparison table of Ethereum and reference
model. The following discussion explains how the Delta ∆ values are derived.

Actors Ethereum presents 3 actors, but as discussed in Section 3.1.1, we do not
consider Contract Account as a separate actor for the reference model - Overall
∆actors = 0.

Services Creating contracts is also part of the Transaction creation. Similar to
MultiChain’s assets, streams and permissions, contract is a part of metadata that
goes into the transaction. Also, sending messages is a part of communication done
between CA’s using transactions Ethereum is a public blockchain, so we do not
take the Blockchain access service into account. Overall ∆services = 0.

Processes Network discovery process is simpler compared to MultiChain and
Chain, but still features Peer discovery (connecting to bootstrap nodes), Hand-
shake (verify versions), Network propagation (connecting to multiple peers) and
Synchronization (downloading the latest block data when connecting to the net-
work). Both transaction and consensus processes have permission controls, which
is not taken into account due to non-private nature of the blockchain. Overall
∆processes = 0.

Data models The Data model presented on the reference model covers all the
entities present in Ethereum. Overall ∆datamodels = 0.

4.1.6 Chain Core

Appendix D presents a side-by-side comparison table of Chain Core and refer-
ence model. The following discussion explains how the Delta ∆ values are derived.

50

Actors Chain presents 2 main actors - Issuer / Spender of assets (essentially
User) and Blockchain Operator (which is broken into Block generator and Block
signer, due to the proof-of-stake type consensus model). Overall ∆actors = 0.

Services Defining and issuing assets is part of the creating a transaction. Chain
has number of services that regard Block generation (Gathering transactions, gen-
erating block, signing block, publishing block) and due to this, they are also
counted as one. Blockchain access is controlled via network tokens, that are handed
out by the administrator. Overall ∆services = 0.

Processes Similar to MultiChain, a connecting user must know the IP / name
of the blockchain and that user must have been granted a network token from
the blockchain operator. Upon connecting, the blockchain is synchronized and the
network discovered. Transactional process introduces “Issuance program valida-
tion” and “Control program validation” which control and issuance and spending
of given assets. This is similar to Bitcoins general consensus rules, or can be con-
trolled with Ethereums smart contracts for custom assets. Block generation is
different from other platforms - Chain features proof-of-stake where the block is
generated by a single person and M out of N block signers have to validate and sign
the block in order for it to get submitted to the blockchain. This is still compliant
with the model (private blockchains feature a consensus process as a sub-process
in the block generation process) - Overall ∆processes = 0.

Data models The Data model features the standard Block, Block Header and
Transaction. Chain introduces Assets and Programs separately, but lack accounts
or state. This gives an Overall ∆datamodels = 0.

4.2 Platforms Not Used to Construct the Reference Model

Second part of the correctness validation consists of researching four new
blockchain technologies, which are:

• Cryptonote [25] - a technology that aims to solve the issues of untraceability
and unlinkability. With Bitcoin, transactions can be linked together via
Outputs and Inputs and there is a possibility to trace the money’s movement
back to its origins.

• NXT [26] - a proof-of-stake based public blockchain, which also introduces
accounts for permissioned operations.

• Hyperledger Fabric [15] - a modular blockchain solution for supporting differ-
ent enterprise requirements and a unique approach to consensus by endorsing
transactions before being included in a block.

51

• Tendermint [18] - blockchain with a state-replication machine (similar to
Ethereum) for building smart-contracts and applications

Regarding these four platforms, we will be using the reference model as a check-list
to analyse what is present on a given platform, that is also present on the reference
model. Similarly, we will provide a Delta (∆) value for each comparison, but with
a modified Delta definition.

4.2.1 Validation Method

Compared to correctness validation in part 1 (Section 4.1), this section will have
the ∆ defined differently. Since the research and analysis is not as detailed and
complete as for the first four technologies, the ∆ value in this part will represent
the existence of entities in the chosen implementations. ∆ = 0 evaluation is
given when all of the entities provided on the reference model are present on the
chosen technology. If there is a complete absence of the described entity in the
documentation, it will be marked with − (dash). ∆ > 0 means that reference
model present entities that are not present on the chosen technology.

4.2.2 Cryptonote

The comparison against the reference model is done based on the whitepaper
[25] and the Cryptonote standards11. From the comparison (presented in detail
in Table 5 we can see that Cryptonote features same Actors as we have defined
in the reference model - this gives a ∆actors = 0. In Services, Cryptonote does
not feature a Blockchain access service, because it is a public blockchain. This is
excluded in the Delta calculation and gives a ∆actors = 0. In Processes, Network
discovery process is evaluated to − due to the lack of detailed information in
the documentation. Consensus process is also missing detailed information, but
the general information provided is enough to see that the necessary steps, in
terms of block validation, are taken. Transaction process and Block generation
process both lack permission check, because of the unpermissioned environment.
Overall ∆processes = 0. In Data models, Cryptonote is missing representations
for Account and State, because of the technology being more similar to Bitcoin in
terms of functions and transactions - this evaluates to ∆datamodels = 2.

11https://cryptonote.org/standards/

52

Table 5: Overview of Cryptonote and reference model actors, services and pro-
cesses

Cryptonote model Is
present?

Reference model

Actors
CryptoNote features the same actors as the reference model. There
is an User that wants to send/receive value via transactions and
miner, that mines blocks by solving proof-of-work.

X User

X Block generator

Services
User creates transactions similar to the reference model X Transaction creation
Miners who comprise blocks and solve proof-of-work (different from
one in Bitcoin or Ethereum)

X Block generation

Peers validate all the data and rely on proof of work to reach a
consensus. [CryptoNode standards CNS009]

X Block validation

Public blockchain - Blockchain access
Network discovery

No information available regarding description of network discovery
for Cryptonote

- Peer discovery
- Handshake
- Discover additional peers
- Block synchronization

Transactions
Sender collects transaction inputs and specifies the amount of coins
to be sent

X Add transaction data

Public blockchain - Permissions check
User generates a signature using a secret key and the signature is
attached to the transaction

X Sign the transaction

Transaction is sent to peers in the network X Broadcast the transaction to
the network

Block generation
Assumed to be present because the technology features a Block
data structure and unverified transactions will be included in a
Block. Adding previous Block’s metadata is an essential step for
any blockchain.

X Create new block
X Collect unverified transac-

tions
X Add previous block meta-

data
Non-permissioned blockchain - Apply permission changes
In blockchain ecosystem, unverified transaction would not get added
to the blockchain

X Verify transactions

X Sign the block
Miner calculates the proof of work + receives a reward for the work X Provide proof
Block is added to the network if a valid proof-of-work is found X Submit block to the network

Consensus

No detailed information available regarding description of Consen-
sus process for Cryptonote. Cryptonote Standard CNS009 mentions
“Peers validate all the data and rely on proof of work to reach a
consensus.”

X Validate transactions ac-
cording to consensus rules

X Validate proof
X Validate generation transac-

tion
X Validate transactions
X Add the new block to

blockchain
Data models

Block and Block Header are described in Cryptonote standards
CNS003

X Block

X Block Header

Transactions are described in CryptoNote standards CNS004 X Transaction
- Account
- State

53

4.2.3 NXT

The comparison is presented in detail in Table 6. NXT features same actors -
one who contributes in terms of transactions and one who contributes to generating
blocks - this evaluates to ∆actors = 0. In Services, similar to Cryptonote, it
features the same services apart from Blockchain access, but since NXT is a public
blockchain (does not feature access controls), this does not contribute towards delta
- ∆services = 0. In Processes Network discovery process evaluates to − because
no information was available for the given process. The Transaction process does
feature a permission check, due to the existence of accounts which can be assigned
permissions, but for example, Block generation is not permissioned. Consensus
process is well covered with all the steps present in the implementation. Overall
∆processes = 0. NXT is well covered in terms of Data models, with the only
absence of state, because NXT is a transactions based and does not feature a
state-replication machine - ∆datamodels = 1.

Table 6: Overview of NXT and reference model actors, services and processes

NXT model Is
present?

Reference model

Actors
A node on the Nxt network is any device that is contributing trans-
action or block data to the network [26].

X User

X Block generator

Services
Each node on the Nxt network has the ability to process and broad-
cast transactions [26].

X Transaction creation

Known as “Block forging” on NXT X Block generation
Blocks are validated as they are received from other nodes [26]. X Block validation
Non-permissioned blockchain - Blockchain access

Network discovery

No information available regarding description of network discovery
for NXT

- Peer discovery
- Handshake
- Discover additional peers
- Block synchronization

Transactions
NXT features accounts, which can be embedded with permissions
for creating certain transactions

X Permission check

Several types of transactions are possible + there are number of
required parameters

X Add transaction metadata

The transaction is signed using the sending account’s private key
[26]

X Sign the transaction

The encrypted transaction data is placed within a message instruct-
ing network peers to process the transaction and the transaction is
broadcast to all peers on the network [26]

X Submit the transaction to
the network

Block generation
X Create new block

Up to 255 unverified transactions will be collected and added X Collect unverified transac-
tions

Blocks contain hash of the previous block and number of Transac-
tions stored

X Add previous block meta-
data

Non-permissioned - Apply permission changes
All block parameters are validated, including transactions X Verify transactions

54

Generating account’s ID, block’s signature and signature for entire
block is added

X Sign the block

NXT has proof-of-stake algorithm and onsensus is rewarded with
transaction fees

X Provide proof

X Submit block to the network
Consensus

All possible block parameters are verified, including the effective
balance of the block generators account [26].

X Validate block according to
consensus rules

X Validate proof
X Validate generation transac-

tion
X Validate transactions

If block validation fails, nodes are blacklisted to prevent the propa-
gation of invalid blocks

X Add the new block to
blockchain

Data models
The ledger of Nxt transactions is built and stored in a linked series
of blocks [26]

X Block

Prefaced by a block header that contains identifying parameters [26] X Block Header

Transactions are the only means Nxt accounts have of altering their
state or balance [26].

X Transaction

NXT provides accounts, stored on the network and represented by
a 64-bit address that is also the account address

X Account

- State

4.2.4 Hyperledger Fabric

The detailed comparison for Hyperledger Fabric is presented in Table 7. The
Fabric features both User and Block generator, but the latter is defined in a more
specific way “Ordering-service-node” -Actors evaluate to ∆actors = 0. Hyperledger
presents all the Services that are present in the reference model - ∆services = 0.
In Processes, both Network discovery and Transaction creation is well covered
by the reference model. In Block generation, the transactions are “endorsed” be-
fore reaching the Block generator (the ordering node), which means they are not
unverified when added to a block (evaluates to ∆ = 1). In Block generation Apply
permission changes does not contribute toward the Delta, because the permission
management is done after transaction is submitted to the network, by the endors-
ing peers, who “endorse” the transaction before it reached the Block generator.
Consensus process is generally described in the documentation and covers the nec-
essary steps in the reference model. Overall ∆processes = 1. In the Data models,
Hyperledger is the only technology represented in this paper that does not feature
a Block header. All of the information is kept in the Block - this evaluates to
∆datamodels = 1.

55

Table 7: Overview of Hyperledger Fabric and reference model actors, services and
processes

Hyperledger Fabric model Is
present?

Reference model

Actors
The client represents the entity that acts on behalf of an end-user.
Clients create and thereby invoke transactions [15].

X User

Ordering-service-node or orderer: a node running the communica-
tion service that implements a delivery guarantee, such as atomic or
total order broadcast [15].

X Consensus operator

Services
Clients create and thereby invoke transactions. X Transaction creation
Ordering services creates blocks of transactions specific to a channel X Block generation
The blocks of transactions are “delivered” to all peers on the channel.
The transactions within the block are validated to ensure endorse-
ment policy is fulfilled and to ensure that there have been no changes
to ledger state for read set variables since the read set was generated
by the transaction execution.

X Block validation

Hyperledger Fabric underpins a transactional network where all par-
ticipants have known identities.

X Blockchain access

Network discovery
Client connects to a peer for communicating with the blockchain.
The client may connect to any peer of its choice.

X Peer discovery

Access control lists are implemented on all hierarchical layers of the
network and payloads are repeatedly signed, verified and authenti-
cated.

X Handshake

Each Member on a channel has an anchor peer (or multiple anchor
peers to prevent single point of failure), allowing for peers belonging
to different Members to discover all existing peers on a channel.

X Discover additional peers

If the block height received upon DISC_HELLO is higher than the
current block height of the peer, it immediately initiates the syn-
chronization protocol to catch up with the network [9].

X Block synchronization

Transactions
Building a PROPOSE message in Fabric ecosystem and specifying
if it is a Invoke or Deploy transaction

X Add transaction data

Access control lists are implemented on all hierarchical layers of the
network and payloads are repeatedly signed, verified and authenti-
cated.

X Permissions check

Client signature is included in the transaction X Sign the transaction
If client receives enough messages and signatures on the transaction,
then it means that the proposal is endorsed and transaction can be
submitted to the network (through ordering service)

X Submit the transaction to
the network

Block generation
Ordering Service creates a block X Create new block
Transactions are endorsed and validated beforehand - Collect unverified transac-

tions
Block header contains previous block’s hash value X Add previous block meta-

data
Transactions and their regarding permissions are managed before
they reach the Block generator

- Apply permission changes

Transactions are re-verified X Verify transactions
No information about signing blocks or blocks containing signatures - Sign the block
Private blockchain - Provide proof
Blocks are delivered to peers X Submit block to the network

Consensus
No information available for detailed block validation. In fabric,
transactions are validated and if all are valid, block is considered
valid and will be accepted.

X Validate block according to
consensus rules

56

Private / permissioned blockchain - Validate proof
Private / permissioned blockchain - Validate generation transac-

tion
X Validate transactions
X Accept the new block

Data models
X Block

Block header is not present [9] - Block Header

Transactions are operations invoked on the chaincode. Deploy trans-
actions / Invoke transactions

X Transaction

X Account
The latest state of the blockchain (or, simply, state) is modeled as a
versioned key/value store (KVS), where keys are names and values
are arbitrary blobs.

X State

4.2.5 Tendermint

Detailed comparsion for Tendermint is presented in Table 8. This technology
features the same Actors that are present in the reference model (Block generator
is described as a “validator”) - this evaluates to ∆actors = 0. In Services, Ten-
dermint is missing the Blockchain access service, but since it is not permissioned
or private blockchain, this does not contribute towards Delta - ∆services = 0. In
Processes, all the entities are covered well, with the only abundance of permission
checks. Since it is not a permissioned blockchain, this does not contribute towards
the Delta - processes evaluate to ∆processes = 0. In Data models, Account is
the only missing entity in comparison to the reference model - this evaluates to
∆datamodels = 1.

Table 8: Overview of Tendermint and reference model actors, services and pro-
cesses

Tendermint model Is
present?

Reference model

Actors
Users are present. They have accounts, that hold coins,
that can be used by transactions

X User

Tendermint features validators, that participate in the
consensus process [18]

X Consensus operator

Services
Users create transactions to exchange coins X Transaction creation
Byzantine proposer creates a block X Block generation
Blocks are validated by peers receiving the block X Block validation
Non-permissioned - Blockchain access

Network discovery
Peers specified manually, Tendermint Core currently uses
the Query connection to filter peers upon connecting, ac-
cording to IP address or public key. [18]

X Peer discovery

Info about the connection is required X Handshake
Peer-exchange protocol can be enabled, that will make
peers gossip about known peers and form a more resilient
network [1].

X Discover additional peers

57

Peers need to sync to common height X Block synchronization
Transactions

Value transactions, bond/unbond transaction, evidence
transactions

X Add transaction metadata

- Permission check
Transactions hold cryptographic credentials X Sign the transaction
DeliverTx message to deliver a transactions X Submit the transaction to the network

Block generation
New block is created by Byzantine proposer X Create new block
Transactions are collected from mempool [1] X Collect unverified transactions
New Block Header contains information about the previ-
ous Block

X Add previous block metadata

- Apply permission changes
Transactions are verified in the delivery process X Verify transactions
All validators who vote for the block, provide their sig-
nature

X Sign the block

Byzantine consensus and the ransactions fees are divided
among validators

- Provide proof

Transactions are broadcasted to the network X Broadcast the block to the network
Block validation

A block is said to be valid if all the transactions in the
block are valid and sufficient signatures are included in
the validation [18].

X Validate block according to consensus rules
- Validate proof
- Validate generation transaction
X Validate transactions
X Add the new block to blockchain

Data models
Block has header, data and signatures from the previous
block

X Block

Block header contains most of the information regarding
the block - chain id, height, block time, last block id,
hash of data, hash of validation

X Block Header

X Transaction
- Account

State is represented by AppHash which keeps the current
state of the blockchain

X State

4.3 Results

Results for the ∆ values are presented in Table 9. The goal of accuracy
validation was to get a ∆ value as close to 0 as possible for initial four technologies
as well as for four new technologies that were not used as a basis of building the
model.

From the results, we can see that the initial four technologies are covered almost
accurately by the reference model, with subtle differences in Data models (e.g.,
four differences - Bitcoin and MultiChain do not support Accounts and State).
We consider this result acceptable, because of the differences that smart contracts
introduce to the data model (see Figure 33).

As for the four technologies that were not part of the initial building of the
model, we found differences in the Data models (e.g., five entity differences -
CryptoNote and NXT do not keep the blockchain state, Hyperledger Fabric does
not have Block Header, Tendermint is missing account representation) and Con-

58

Table 9: Results of the delta ∆ for the initially chosen Blockchain platforms

Actors Services Data model Networking Transactions Block generation Consensus

Blockchain platforms used to construct reference model

Bitcoin 0 0 2 0 0 0 0
MultiChain 0 0 2 0 0 0 0
Ethereum 0 0 0 0 0 0 0
Chain Core 0 0 0 0 0 0 0

Blockchain platforms not used to construct reference model

Cryptonote 0 0 2 − 0 0 0
NXT 0 0 1 − 0 0 0

Hyperledger 0 0 1 0 0 1 0
Tendermint 0 0 1 0 0 0 0

sensus process (e.g., one entity differences - Transactions in Hyperledger Fabric
are verified and endorsed before reaching the block generator). The information
regarding Network discovery process was not present in the documentation
for Cryptonote and NXT. Overall this result is also considered acceptable, due to
the fact that the new blockchain technologies are different from the initial four
technologies, but still perform well on the defined blockchain properties.

Threats to validity. The accuracy validation was done by the first author of
this paper with the technologies in hand. Thus, another validation approach might
conceive different results, either by defining the Delta differently or by selecting
different implementations of the technology. We did not construct conceptual
models for platforms which were not used to create the reference model. These
were assessed following their documentations. Potentially we could miss some
concepts from the comparison and some sources might be updated later on [25]
[26] with more detailed information. However, this is less likely as the majority of
the entities were in fact captured as shown in Table 9.

4.4 Answers to Research Questions

In this chapter we described the first approach towards validating our reference
model. The main research question for this chapter was “What are the means of
validating the model?”. A sub-question was formulated to give a first answer to
this question:

How to assess the correctness of the reference model? - The reference
model was used in comparison to the four initial platforms, that were used to build
the model (Bitcoin, MultiChain, Ethereum, Chain Core) and also to four new

59

platforms (Cryptonote, NXT, Hyperledger Fabric and Tendermint). We defined
a Delta (∆) metric, that represents the difference between a given platform in
regards to our reference model.

The results reflected a good overall coverage when comparing to different tech-
nologies. This could potentially mean, that the conceptual reference model can be
considered as a baseline for the technology, from which new implementation can
build upon. This being said, the comparison was done from the authors perspective
and may yield different results when comparing to other implementations, but the
risk is minimal since the model is performing good on the researched technologies.

60

5 Security Assessment
First part of the validation (see Chapter 4) was about the correctness of the ref-

erence model - how accurately does it compare to other technologies. This chapter
will provide an additional answer to “What are the means of validating the model?”
(See SRQ3 in Section 1.1). The sub-question is formulated as “How to assess the
utility of the model?”. The model will be used for security assessment (see Figure
35) - we will gather a set of known security risks that are already identified for
blockchain technology and represent using the reference model, with additional
examples from the modeled platforms. The goal is to see if the reference model
can be used for such evaluation and can we find out, what assets or components are
targeted or affected by certain attacks or risks. To present the researched risks, we
will use Information System Security Risk Management (ISSRM) alignment with
Archimate [13] and BPMN [4].

Figure 35: Security assessment using the reference model

5.1 Security Risks

Table 10 illustrates security risks which we have identified in the literature [19]
[16]. We define them using ISSRM domain model [20].

Risk is a combination of threat and vulnerabilities, that lead to a negative
impact harming assets [20]. In DNS Seeds man-in-the-middle attack (see Table
10), the attack happens when DNS query is intercepted by the malicious seed
(Threat agent). The intercepted query will return IPs to compromised nodes,
that can be part of another network. This means that the DNS Seed query is
vulnerable, because it can be intercepted and additionally, the query results are
not authenticated. This leads to a loss of DNS query integrity and reliability, which
impacts the broadcasted transactions and received blocks. All of this combines into
a risk, where a malicious seed will intercept the DNS query and return IPs that
are not authenticated. This leads to the honest node connecting to a compromised
network, where transactions and blocks are controller by the network.

The same type of analysis is done for the Sybil attack and Selfish mining
(51% attack), which is presented in Table 10. Next, we will present the ISSRM-
ArchiMate alignment for the security risks.

61

Table 10: Blockchain related risks decomposed using the ISSRM Risk-related con-
cepts.

ISSRM DNS Seeds man-in-the-
middle attack

Sybil attack Selfish mining (51% at-
tack)

Risk Malicious seed intercepts the
DNS query and returns
compromised node IP ad-
dresses that are not authen-
ticated. The honest node
will connect to a compro-
mised node/network

Attacker fills the network
with finite number of nodes,
trying to increase the chance
of a connecting node to be
surrounded by compromised
node. Then compromised
nodes can control what is
broadcasted.

Majority of the miners con-
trol what is included in the
blocks and create new blocks
faster then honest miners
[16].

Impact Loss of DNS query integrity
and reliability. Unsafe node
IPs are returned. Unreliable
network. The transactions
broadcasted and blocks re-
ceived are controller by the
compromised network.

Loss of network reliability.
Blocks / Transactions are
not broadcasted honestly

Loss of network reliability.
Broadcasted blocks may not
be built honestly.

Event Malicious seed can intercept
the DNS query and return
IPs of compromised nodes,
because the results are not
authenticated

Attacker fills the network
with finite number of nodes
in order to increase the pos-
sibility of the honest node
connecting to surrounding
compromised nodes

Majority of the miners con-
trol what is included in the
block and submit the block
to the network faster then
honest miners.

Vulner-
ability

DNS query interception.
DNS query results are
unauthenticated. In public
blockchains, nodes do not
authenticate with peers.

Possibility to create and
control finite number of
nodes.

Block generation can be
dominated by majority with
lots of computing power.
In public blockchains, nodes
not not verify miners, be-
cause they are anonymous.

Threat Malicious seed intercepts the
peer IP query and returns IP
of compromised peer [2]

Attacker has filled the
network with compromised
nodes

More then 50% of the min-
ers in the network are com-
promised

Threat
agent

Malicious seed intercepting
the DNS query

Attacker who wants a hon-
est client to connect to nodes
controlled by him

Group of miners working
together to monopolize the
network

Attack
method 1. Intercept the DNS query

2. Return compromised
node IP

1. Create and connect finite
number of nodes to the
network

1. Form a group of miners
2. Start listening to the

network and mine new
blocks

3. Control what is included
in the block and out-
perform honest nodes

5.2 Security Risks in ISSRM-Aligned ArchiMate

This section presents the alignment between ISSRM and Archimate [13]. The
legend is displayed on Figure 36, mapping specifics are explained in Table 11 and
the ISSRM concepts are described in Table 10.

Risk is linked to both the cause (Loss event) and mitigation (Control objective).
Control objective is a concept used to implement a control for the risk and Security
requirement is a realization of that concept. Loss event is a loss or damage to

62

an asset, which is triggered by the Threat event. It is an event, performed by
the Threat agent, that impacts an asset through Vulnerability. Components from
reference model are linked to Vulnerability and Risk to show what components are
vulnerable and what components could be a part of a risk.

Figure 36: Legend for ISSRM-ArchiMate aligment

Table 11: Mapping between ISSRM and Archimate

ISSRM concept Corresponding Archimate con-
cept

Attack method Threat event - event that can impact
the asset

Impact Loss event - event that is triggered by
threat event
Risk - Quantification of threat. Shows
what risk a specific component has,
that can cause the loss event.

5.2.1 DNS Seeds man-in-the-middle-attack

ArchiMate mapping for the vulnerability is displayed on Figure 37. Network
discovery process is vulnerable if the blockchain technology is using DNS seed

63

query to help new users connect to the network. This query can be intercepted
and a malicious agent can return the IP of a compromised node, who can be part
of a compromised network. The query results are not authenticated, so the new
node will accept the received IP and will connect. Once connected, services like
Transaction creation become vulnerable because the created transactions will be
broadcasted to the compromised network. One of the ways to prevent this type of
attack would be to acquire node IP’s from a trusted source, to prevent DNS seed
query. Another way would be to implement DNS Seed query results authentication
so that the results could be trusted.

Figure 37: DNS Seeds query man-in-the-middle attack ISSRM mapping with
Archimate.

5.2.2 Sybil attack

ArchiMate mapping for the vulnerability is displayed on Figure 38. Similarly
to DNS Seed query vulnerability, in Sybil attack, the Network discovery process
is vulnerable because: 1) Attacker can connect a finite number of nodes to the
network 2) Honest node will connect to the network and will be surrounded by
compromised nodes. This means that all the operations the honest node does, are
relayed to compromised nodes and they may ignore it and not relay it forward to
the real network. Also, compromised nodes may broadcast blocks that are not part

64

of the main chain, for the honest node to validate and include in its blockchain.
To counter this, Sybil resistance [19] means that honest node has to be connected
to a single node from the main network of nodes, to resist the Sybil attack. Then
the honest node will have knowledge of the longest (and one with most cumulative
difficulty) and latest blockchain - which will make the honest node ignore all blocks
relayed from Sybil nodes.

Figure 38: Sybil attack ISSRM mapping with Archimate.

5.2.3 Selfish mining (51% attack)

ArchiMate mapping for the vulnerability is displayed on Figure 39. 51% attack
is where the majority of the miners control the blocks that are generated in the
network. Block generation process is vulnerable because the majority, with their
overwhelming amount of computing power, can mine blocks faster than honest
miners. This creates a situation where compromised miners generate blocks and
gather the reward for blocks. They could also control which transactions are in-
cluded in the blocks. This keeps the honest miners busy trying to mine blocks, but
in reality, they can not compete with the majority. Usually, private blockchains
do not present problems like these because the miners are known and trusted. An-
other solution could be similar to MultiChain’s approach, where Mining diversity
requires different miners to generate blocks.

65

Figure 39: Selfish mining (51 % attack) ISSRM mapping with Archimate.

5.3 Security Risks in Security Risk-Oriented BPMN

This section presents the alignment between ISSRM and BPMN, with the
syntax adopted from [4]. The ISSRM concepts are described in Table 10.

5.3.1 DNS Seeds Man-in-the-middle Attack

From the ArchiMate alignment (Figure 37) we can see that theActors interact
directly with theNetwork discovery process, that is linked with a vulnerability.
The vulnerable component in this case is the Peer discovery process in Network
Discovery process, seen on Figure 40. This type of vulnerability depends on
the implementation and mainly affects implementations that feature a DNS query
to acquire IPs. If this vulnerability is present, Transaction creation is under
threat. Figure 41 shows, how broadcasting transactions becomes harmful to assets
(Transactions), because they are broadcasted to a compromised network.

On Figure 42, we have expanded the reference model’s Peer discovery sub-
process (see Figure 42) of the Network discovery process, with the Bitcoin
implementation of Peer discovery (see Section 2.3.2). From the BPMN we can see
that Query DNS Seed list is the vulnerable task in the process. The results are
unauthenticated and thus Connecting to the node becomes a threat, because the
new node does not actually know where it is connecting.

66

Figure 40: Vulnerable component in the Network Discovery process

Figure 41: DNS Seeds query man-in-the-middle attack ISSRM mapping with
Transaction creation BPMN

Figure 42: DNS Seeds query man-in-the-middle attack ISSRM mapping with Net-
work discovery BPMN

On the contrary, Chain Core’s Network discovery process (see Figure 23)
does not feature a DNS Seed query. The access is managed by an administrator

67

who will distribute the IPs and access tokens for the participants. This mitigates
the risk of executing an external query, that can be intercepted. Then again, this
would make the network permissioned - only those who are given the access, can
connect - and the blockchain would not be fully public anymore. This is the trade-
off of having a private network - administrator can manage access control and can
tell, if a certain user is connected to the network or not. For public blockchain
DNS query is a required solution because new nodes need to get the initial IP of
a peer to connect to. As we can see, the implementation of this sub-process is up
to the developer.

5.3.2 Other Security Risks

Selfish mining BPMN mapping for the vulnerability (displayed on Figure 43).
From the Block generation process, we can see that when a new block is created,
the process resets and Block generators will begin working on new blocks. The
Business assets, Transactions, are under threat because the System asset, Collect-
ing unverified transactions, is controlled by the generator and certain transactions
could be kept out of the block. Providing proof is also considered vulnerable be-
cause honest generators can not keep up with the computing power the majority
has and thus they will not be able to publish new and honest blocks - they will
just be busy trying to find the proof.

Figure 43: 51% Attack ISSRM mapping with BPMN. Block generation process.

This mainly affects public blockchains - because the block generators are anony-
mous. In private blockchains, all the generators are known and if there would be a
group working together, it would be easily identifiable. Although, this is unlikely
because private blockchains have abandoned the exhaustive proof mechanism (be-
cause generators are known) in favour fast transactions processing. Still, platforms
like MultiChain have implemented “mining diversity”, which restricts single gen-
erators from producing multiple blocks in succession and all the generators in the

68

network have to take turns in generating the blocks.

Sybil attack BPMN mapping for the vulnerability. On Figure 44, the reference
model’s Network Discovery process is vulnerable in two sub-processes. Firstly
Peer discovery, because the new node can connect to a Sybil node, and secondly
Discover additional peers, in which case the Sybil node will share IPs of other
Sybil nodes. This will lead the honest node connecting to a network, where it
is surrounded by Sybil nodes, which also leads to a vulnerability in Transaction
creation process (Figure 45). The honest node will try to broadcast a transaction
(a Business asset) to the network, but the Sybil nodes around him may not relay
it forward and it might not be included in the next block.

Figure 44: Sybil attack ISSRM mapping with BPMN on the Network discovery
process

Figure 45: Sybil attack ISSRM mapping with BPMN on the Transaction creation
process

69

Additionally, the Sybil nodes can relay blocks, that have been generated by the
compromised nodes - this leaves the honest node open for double-spending attacks.
In Bitcoin, such risk is mitigated when the honest node connects to another honest
node. In this case, the honest node will learn about the longest chain with the
highest difficulty [19] and takes that as the basis for including new blocks.

5.4 Discussion

We took the reference model, conceived in Section 3.2, and wanted to see if the
model can be used to apply security-risk assessment to blockchain technology. We
used ISSRM risk-related concepts and aligned them with Archimate and BPMN in
order to see, which actors, assets and components are affected by different attacks
on the blockchain technology. The alignment with Archimate presented a top-level
view of the affected actors, services, processes and assets, while BPMN alignment
allowed us to dive deep into the process and see exactly, which parts of the process
are vulnerable. From the result in Sections 5.2 and 5.3 we can see which entities are
affected and how. We also compared implementations from different technologies,
to show where the vulnerability is present, where it is not present and what are the
possible mitigations for the given threat. This also lead to a discussion about the
trade-off between public and private blockchains. This type of security assessment
on the blockchain would not be possible without the help of the reference model.
Since the reference model is generalised, the implementation of the process is
up to the developer. This security assessment should help developers in terms
of understanding which threats they might be dealing with in certain steps of a
process.

5.5 Answers to Research Questions

This chapter provided an alternative answer to our third research question
“What are the means of validating the model?” (See SRQ3 in Section 1.1). Specif-
ically for this chapter, the sub-question was “How to assess the utility of the
model?”. We assessed the utility by using the reference model to perform a secu-
rity assessment on the blockchain technology. We researched known security risks
and presented them in ISSRM. From there, we provided ISSRM mapping with
ArchiMate and BPM notations to show the link between actors and the vulnera-
ble component.

70

6 Concluding Remarks
This thesis gives an overview of the disruptive blockchain technology. Bitcoin,

MultiChain, Ethereum and Chain Core each presented a different approach to net-
working, transactions, block generation, consensus, security and permissions. The
comparison resulted in the reference model, that aims to represent the domain of
the blockchain technology. The model contributes to the explicit understanding of
the technology and its processes. Additionally, the thesis presents two approaches
to validation, that were performed on the model, with the corresponding results.
The first approach being accuracy validation, where we compared the reference
model to a total of eight platforms - initial four that were used to build the model
and four new platforms - Cryptonote, NXT, Hyperledger and Tendermint. The
second approach was validation via application - by applying risk-related security
assessment on the blockchain technology using the reference model. Known risks
were researched and ISSRM alignment with ArchiMate and BPMN was used to
capture components affected by the threats.

6.1 Limitations

Even though the technology has been around since 2009, we still encountered
limitations considering the literature in hand. As mentioned in the introduction,
there are very few academic studies available regarding blockchain and its repre-
sentation. Most of the available non-academic papers about blockchain technology
are whitepapers, documentations or technical documents; some of which are still
being updated and may be incomplete. Due to this, the research presented in this
paper was performed based on the available literature.

The second form of limitation comes in form of threats to the validity of the
accuracy validation. The validation was done by the first author of this paper with
the technologies in hand and the available literature. Due to this, another valida-
tion approach might conceive different results, either by defining the comparison
metric differently, by selecting different implementations of the technology or be-
cause the sources have been updated with the latest information and the missing
gaps have been filled.

6.2 Answers to Research Questions

In the introduction we presented our main research question “How to unify the
understanding of the technology, through a comprehensive reference model? ”. We
divided this question in three sub-questions.

71

What is the current state of the blockchain technology and how to model
the representations? - We investigated different blockchain technologies and
presented our research method for the state of the art. The technologies were Bit-
coin, MultiChain, Ethereum and Chain Core. These implementations were chosen
because each brought something different in terms of privacy and smart-contracts.
We defined four major properties, that we considered for each technology: Actors,
Services, Processes and Data models. All of the properties were modeled using
known notations: 1)ArchiMate 2) BPMN 3) UML.

How to build the reference model? - We used the information gathered
on the state of the art and we presented an analysis, where we compared the
considered properties for each of the selected technology. From that comparison,
we built the reference model based on the similarities, with the addition of specific
entities and components for public/private blockchains and smart-contracts.

What are the means of validating the model? - We validated the model
in two distinct ways. First, the accuracy validation, where we directly validate
how well does the reference model perform in comparison to existing technologies.
Secondly, we used the reference model and supported it with examples from state
of the art technologies to present a security assessment on the technology.

6.3 Conclusion

Results of the accuracy validation reflect that the model performed good enough
to cover the known blockchain technologies. We discovered subtle differences in
comparison to the four initial technologies, that were used to build the model,
as well as differences in Data models and processes regarding newly chosen tech-
nologies. Overall we consider these results acceptable due to the differences that
privacy and smart-contract capabilities present.

Results of the security assessment indicate that the reference model can be used
for such an assessment and we can see, which actors are affected, what services
do they use and what parts of the processes are vulnerable (or cause the threat).
We also discussed mitigation and compared different implementations to observe
where the vulnerability is present and where it is not. Additionally, we discussed
specific tradeoffs between public and private blockchains in terms of security. The
results potentially indicate how to develop this fast growing technology further
and in a more secure way by expanding its disruptive nature to other application
domains.

When it comes to standardisation of the blockchain technology and its pre-
sentation it in a reference way, there exist some studies that thrive towards this

72

goal. In [11] the technology is defined using three layers - Essential, Infological and
Datalogical layer. The information is presented in the UML model and explains
the general overview. However, it lacks details to define relationships between ac-
tors and processes. In our work, we have used different notations to present the
reference model. We explicitly present the link between the users and processes
and expand these processes by showing targeted private and public activities. We
hope that it would guide the business analysts and help them to communicate with
the developers when it comes to working with the blockchain technology. In terms
of implementation, we hope the security assessment helps to understand what are
certain risks in some components, how to mitigate them and what are the tradeoffs
between different implementation.

6.4 Future Work

This type of research on the blockchain technology is a first and hopefully a
basis for future research. The future vision with such a reference model would be
to see if the model can be used during a real blockchain technology development
and how does this model contribute to the general understanding of the technology.
By no means this model is complete and we do not claim that this model should
be used for developing new blockchain implementations. Rather, we hope that this
inspires others to do research on the blockchain and work towards standardising
the technology, developing more up-to-date models as the technology progresses.

73

References
[1] Tendermint Documentation. https://tendermint.com/docs. Accessed:

2017-03-05.

[2] Bitcoin Developer Guide. Technical report, 2009.

[3] Devon Allaby. The Trust Trade-Off: Permissioned vs Permissionless
Blockchains. Fjord, October 2016.

[4] Olga Altuhhova, Raimundas Matulevičius, and Naved Ahmed. An Extension
of Business Process Model and Notation for Security Risk Management. Int.
J. Inf. Syst. Model. Des., 4(4):93–113, October 2013.

[5] Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-
Currencies. O’Reilly Media, Inc., 1st edition, 2014.

[6] Vitalik Buterin. On Public and Private Blockchains, 2015.

[7] Vitalik Buterin. Thoughts on UTXOs by Vitalik Buterin, Co-Founder of
Ethereum, 2016. [Online; accessed 10-January-2017].

[8] Chain. Chain Protocol Whitepaper. Technical report.

[9] P.W.D. Charles. Protocol Specification. https://github.com/
hyperledger-archives/fabric/blob/master/docs/protocol-spec.md,
2016.

[10] Roberto Capodieci David Moskowitz, Tim Swanson. A gentle introduction to
blockchain technology, 2015.

[11] Joost de Kruiff. Understanding the Blockchain Using Enterprise Ontology.
2017.

[12] Ethereum. "A Next-Generation Smart Contract and Decentralized Applica-
tion Platform, 2016. [Online; accessed 6-October-2016].

[13] E. Grandry, C. Feltus, and E. Dubois. Conceptual Integration of Enter-
prise Architecture Management and Security Risk Management. In 2013
17th IEEE International Enterprise Distributed Object Computing Confer-
ence Workshops, pages 114–123, Sept 2013.

[14] Dr Gideon Greenspan. MultiChain Private Blockchain - White Paper, 2015.
[Online; accessed 12-December-2016].

74

https://tendermint.com/docs
https://github.com/hyperledger-archives/fabric/blob/master/docs/protocol-spec.md
https://github.com/hyperledger-archives/fabric/blob/master/docs/protocol-spec.md

[15] IBM and Hyperledger Project. Hyperledger Fabric Documentation. Technical
report, 2017.

[16] Richa Kaushal. Bitcoin: Vulnerabilities and Attacks. Imperial Journal of
Interdisciplinary Research, 2(7), 2016.

[17] Casey Kuhlman. How I (currently) Explain The State of Blockchains To
Executives and Researchers, 2015.

[18] Jae Kwon. Tendermint: Consensus Without Mining. URLhttp://www.the-
blockchain.com/docs/Tendermint Consensus without Mining.pdf, 2014.

[19] Jameson Lopp. Bitcoin’s Security Model: A Deep Dive, 2016.

[20] Nicolas Mayer, Jocelyn Aubert, Eric Grandry, Christophe Feltus, and Elio
Goettelmann. An Integrated Conceptual Model for Information System Se-
curity Risk Management and Enterprise Architecture Management based on
TOGAF, ArchiMate, IAF and DoDAF. CoRR, abs/1701.01664, 2017.

[21] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Techni-
cal report.

[22] Steven Norton. CIO Explainer: What Is Blockchain? The Wall Street Journal,
2016.

[23] Kasey Panetta. Blockchain Combines Innovation with Risk. Gartner, October
2016.

[24] Marc Pilkington. Blockchain Technology: Principles and Applications. Re-
search Handbook on Digital Transformations, edited by F. Xavier Olleros and
Majlinda Zhegu. Edward Elgar, 2016.

[25] Nicolas van Saberhagen. CryptoNote v 2.0, 2013, 2014.

[26] Nxt Wiki. Whitepaper:nxt — nxt wiki, 2016. [Online; accessed 26-February-
2017].

[27] Dr. Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction
Ledger Homestead Revision. Technical report.

75

A Table comparing Bitcoin to the reference model

Table 12: Overview of Bitcoin and reference model entities

Bitcoin model Reference model
Actors

Client User
Miner Consensus Operator

Services
Create transactions Transaction creation

Transaction submission
Mine bitcoins Block generation

Block validation
Blockchain access

Processes
Network discovery

Query DNS seed list, Connect to the node Peer discovery
Transmit version message, Send verack
and version message back

Handshake

Send IP to neighbour, Forward IP to
neighbour nodes, Request IP addresses of
other peers, Send IP addresses

Discover additional peers

Block synchronization Block synchronization
Transactions

Enter amount and receivers address Add transaction data
Permissions check

Construct the transaction Sign the transaction
Transmit transaction to the network Broadcast the transaction to the network

Block generation
Build a new block Create new block
Collect unverified transactions Collect unverified transactions
Add fingerprint of previous block Add previous block metadata

Apply permission changes
Verify all transaction Verify transactions according to consen-

sus rules
- Consensus process
- Sign the block
Calculate proof-of-work, Add generation
transaction

Provide proof

76

Submit block to the network Broadcast the block to the network
Consensus

Validate Block data structure, Validate
block header, Validate block timestamp,
Validate block size

Validate block according to consensus
rules

Validate proof of work Validate proof of work
Validate generation transaction Validate generation transaction
Validate all transactions Validate transactions
Accept the new block Add the new block to blockchain

Data models
Block Block
Block header Block Header
Transaction (Transaction Output, Trans-
action Input)

Transaction

Account
State

77

B Table comparing MultiChain to the reference
model

Table 13: Overview of MultiChain and reference model entities

MultiChain model Reference model
Actors

Client User
Miner Consensus operator

Services
Create Assets
Create transactions Transaction creation
Grant permissions
Revoke permissions
Mine blocks Block generation

Block validation
Blockchain access

Processes
Network discovery

Connect using blockchain name, IP and
Port

Peer discovery

Transmit version, verack and verack-
ack message, Verify that connecting
node is on the same blockchain, Ver-
ify blockchain parameters, Verify version
and permitted public address, Send chal-
lenge message, Sign with private key and
send challenge message back, Sign with
private key and send back

Handshake

Assumed to be similar to Bitcoin Discover additional peers
Assumed to be similar to Bitcoin Block synchronization

Transactions
Set asset name, quantity and receivers
address, Set asset name and quantity, Set
stream name and details, Set address and
permission(s)

Add transaction data

Verify an input with permission, Verify
an output with permission

Permissions check

Sign the transaction Sign the transaction

78

Send the transaction to the network Broadcast the transaction to the network
Block generation

Permission check
Construct a new block Create new block
Collect unverified transactions Collect unverified transactions
Assumed to be similar to Bitcoin Add previous block metadata
Apply permission changes in order Apply permission changes
Count number of new miners
Calculate spacing

Verify transactions according to consen-
sus rules
Consensus process
Sign the block
Provide proof

Submit new block Broadcast the block to the network
Consensus

Validate block according to consensus
rule
Validate proof of work
Validate generation transaction
Validate transactions
Add the new block to blockchain

Data models
Block Block
Block header Block Header
Transaction (Transaction Output, Trans-
action Input)

Transaction

- Account
- State

79

C Table comparing Ethereum to the reference model

Table 14: Overview of Ethereum and reference model entities

Ethereum model Reference model
Actors

External account User
Contract account
Miner Consensus operator

Services
Create transactions Transaction creation
Create contracts
Send messages
Mine ether Block generation

Block validation
Blockchain access

Processes
Network discovery

Receive list of recent peers Peer discovery
Connect and synchronize with other
peers

Peer discovery, Handshake, Discover ad-
ditional peers

Transactions
Permission check

Add contract code, Add contract creation
fee, Add contract address and input data,
Add value and receivers address, Add re-
cipients address, value and data, Add re-
ceivers address and set the value of ether
to be sent

Add transaction data

Sign the transaction
Submit the transaction to the network Broadcast the transaction to the network

Block generation
Create a new block Create new block
Determine transactions Collect unverified transactions
Determine ommers

Add previous block metadata
Apply permission changes

Compute a valid state Verify transactions according to consen-
sus rules

80

- Consensus process
- Sign the block
Calculate proof-of-work, Add block miner
reward

Provide proof

Submit the block to the network Submit block to the network
Consensus

Verify that previous block exists, Verify
block’s timestamp, Validate block num-
ber, difficulty, transaction root, uncle
root and gas limit

Validate block according to consensus
rule

Validate proof of work Validate proof of work
Block miner rewards validation Validate generation transaction
Verify state transition from previous
block

Validate transactions

Add the new block to blockchain
Data models

Block Block
Block Header Block Header
Transaction Transaction
Account Account
State State

81

D Table comparing Chain Core to the reference
model

Table 15: Overview of Chain Core and reference model entities

Chain Core model Reference model
Actors

Issuer / Spender User
Blockchain operator (Block generator,
Block signer)

Consensus operator

Services
Define and issue asset
Submit tranaction Transaction creation
Gather valid transactions Block generation
Generate block Block generation
Sign block Block generation
Publish block Block generation
Validate block Block validation
Determine who can participate in the
network

Blockchain access

Processes
Network discovery

Connect and synchronize with other
peers

Peer discovery

Specify block generator URL, network to-
ken and blockchain ID

Handshake

Discover additional peers
Download blockchain data Block synchronization

Transactions
Issuance and control programs Permission check
Issue a new asset Add transaction metadata
Spend existing assert Add transaction metadata

Sign the transaction
Submit the transaction to the network Submit the transaction to the network

Block generation
Batch valid transactions into a block Create new block
Collect transactions Collect unverified transactions
- Add previous block metadata
- Apply permission changes

82

Validate transactions Validate transactions according to con-
sensus rules

Validate the block, Gather signatures,
Send the block back to block generator

Consensus process

Sign the block and send to block signers
/ Sign the block

Sign the block

- Provide proof
Submit the block to the network Submit block to the network

Consensus
Validate block structure, Validate
header, Validate metadata

Validate block according to consensus
rule

Validate proof-of-stake Validate proof of work
Validate generation transaction

Validate transactions Validate transactions
Add the new block to blockchain

Data models
Block Block
Block Header Block Header
Transaction (Transaction Output, Trans-
action Input)

Transaction

Asset -
Program (Control program, Issuance pro-
gram, Consensus program)

-

- Account
- State

83

Non-exclusive licence to reproduce thesis and make thesis public

I, Andreas Ellervee (date of birth: 29th of April 1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

A Reference Model for Blockchain-Based Distributed Ledger Technology

supervised by Raimundas Matulevičius and Nicolas Mayer

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 17.05.2017

84

